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Chapter 1: Introduction 

What is a Signal? 

Anything which carries information is a signal. e.g. human voice, chirping of birds, smoke signals, 

gestures (sign language), fragrances of the flowers. 

Many of our body functions are regulated by chemical signals, blind people use sense of touch. Bees 

communicate by their dancing pattern. 

Modern high speed signals are: voltage changer in a telephone wire, the electromagnetic field 

emanating from a transmitting antenna,variation of light intensity in an optical fiber. 

Thus we see that there is an almost endless variety of signals and a large number of ways in which 

signals are carried from on place to another place. 

 Signals: The Mathematical Way 

A signal is a real (or complex) valued function of one or more real variable(s).When the function 

depends on a single variable, the signal is said to be one-dimensional and when the function depends on 

two or more variables, the signal is said to be multidimensional. 

Examples of a one dimensional signal:  A speech signal, daily maximum temperature, annual rainfall at a 

place 

An example of a two dimensional signal: An image is a two dimensional signal, vertical and horizontal 

coordinates representing the two dimensions.  

Four Dimensions: Our physical world is four dimensional(three spatial and one temporal). 

What is Signal processing? 

Processing means operating in some fashion on a signal to extract some useful information e.g. we use 

our ears as input device and then auditory pathways in the brain to extract the information. The signal is 

processed by a system. In the example mentioned above the system is biological in nature. 

 
The signal processor may be an electronic system, a mechanical system or even it might be a computer 

program. 

Analog versus digital signal processing 

The signal processing operations involved in many applications like communication systems, control 

systems, instrumentation, biomedical signal processing etc can be implemented in two different ways 

Analog or continuous time method 

Digital or discrete time method.. 

Analog signal processing 

Uses analog circuit elements such as resistors, capacitors, transistors, diodes etc 

Based on natural ability of the analog system to solve differential equations that describe a physical 

system 

The solutions are obtained in real time... 

Digital signal processing 

The word digital in digital signal processing means that the processing is done either by a digital 

hardware or by a digital computer. 

Relies on numerical calculations 

The method may or may not give results in real time.. 



 The advantages of digital approach over analog approach 

Flexibility: Same hardware can be used to do various kind of signal pr

case of analog signal processing one has to design a system for each kind of operation

Repeatability: The same signal processing operation can be repeated again and again giving same 

results, while in analog systems there ma

supply voltage. 

The choice of choosing between analog or digital signal processing depends on the application. One has 

to compare design time,size and thecost of the implementation.

Classification of signals 

We use the term signal to mean a real or complex valued function of real variable(s) and denote the 

signal by x(t) 

The variable t is called independent variable and the value x of t as dependent variable.

When t  takes a vales in a countable set t

t ε {0, T, 2T, 3T, 4T,...} 

                                              t ε {....-1, 0 ,1,...}

t ε {1/2, 3/2, 5/2, 7/2,...}      

For convenience of presentation we use the notation x[n] to denote dis

dependent and independent variables take values in countable sets (two sets can be quite different) the 

signal is called Digital Signal. 

When both the dependent and independent variable take value in continous set interval,

called an Analog Signal. 

Notation: 

When we write x(t) it has two meanings. One is value of x at time t and the other is the pairs (x(t), t) 

allowable value of t. By signal we mean the second interpretation.

Notation for continous time signal 

{x(t)} denotes the continuous time signal. Here {x(t)} is short notation for {x(t), t ε I } where I is the set in 

which t takes the value.  

Notation for discrete time signal 

Similarly for discrete time signal we will use the notation {x(t)}, where {x(t)} 

Note that in {x(t)} and {x[n]} are dummy variables ie. {x[n]} and {x[t]} refer to the same signal. Some 

books use the notation x [.] to denote {x[n]} and x[n]  to denote value of x at time n. 

{x(t)} refers to the whole waveform,while x[n] refers to a particular value. 

Most of the books do not make this distinction clean and use x[n]  to denote signal and x[n0] to denote a 

particular value. 

Discrete Time Signal Processing and Digital Signal Processing

When we use digital computers to do processing we are doing digital signal processing. But most of the 

theory is for discrete time signal processing where dependent variable generally is continuous. This is 

because of the mathematical simplicity of discrete time signal proces

to implement this as closely as possible. Thus what we study is mostly discrete time signal processing 

and what is really implemented is digital signal processing.

 

Elementary Signals 

There are several elementary signals that occur prominently in the study of digital signals and digital 

signal processing. 

  

(a) UNIT SAMPLE SEQUENCE:   

The advantages of digital approach over analog approach  

Flexibility: Same hardware can be used to do various kind of signal processing operation,while in the 

case of analog signal processing one has to design a system for each kind of operation 

Repeatability: The same signal processing operation can be repeated again and again giving same 

results, while in analog systems there may be parameter variation due to change in temperature or 

The choice of choosing between analog or digital signal processing depends on the application. One has 

to compare design time,size and thecost of the implementation. 

We use the term signal to mean a real or complex valued function of real variable(s) and denote the 

The variable t is called independent variable and the value x of t as dependent variable.

When t  takes a vales in a countable set the signal is called a discrete time signal. For example

1, 0 ,1,...} 

For convenience of presentation we use the notation x[n] to denote discrete time signal. When both the 

dependent and independent variables take values in countable sets (two sets can be quite different) the 

When both the dependent and independent variable take value in continous set interval,

When we write x(t) it has two meanings. One is value of x at time t and the other is the pairs (x(t), t) 

allowable value of t. By signal we mean the second interpretation. 

 

{x(t)} denotes the continuous time signal. Here {x(t)} is short notation for {x(t), t ε I } where I is the set in 

Similarly for discrete time signal we will use the notation {x(t)}, where {x(t)} is short for {x(t), n ε I }. 

Note that in {x(t)} and {x[n]} are dummy variables ie. {x[n]} and {x[t]} refer to the same signal. Some 

books use the notation x [.] to denote {x[n]} and x[n]  to denote value of x at time n.  

rm,while x[n] refers to a particular value.  

Most of the books do not make this distinction clean and use x[n]  to denote signal and x[n0] to denote a 

Discrete Time Signal Processing and Digital Signal Processing 

computers to do processing we are doing digital signal processing. But most of the 

theory is for discrete time signal processing where dependent variable generally is continuous. This is 

because of the mathematical simplicity of discrete time signal processing. Digital Signal Processing tries 

to implement this as closely as possible. Thus what we study is mostly discrete time signal processing 

and what is really implemented is digital signal processing. 

signals that occur prominently in the study of digital signals and digital 

 

ocessing operation,while in the 

 

Repeatability: The same signal processing operation can be repeated again and again giving same 

y be parameter variation due to change in temperature or 

The choice of choosing between analog or digital signal processing depends on the application. One has 

We use the term signal to mean a real or complex valued function of real variable(s) and denote the 

The variable t is called independent variable and the value x of t as dependent variable. 

he signal is called a discrete time signal. For example 

crete time signal. When both the 

dependent and independent variables take values in countable sets (two sets can be quite different) the 

When both the dependent and independent variable take value in continous set interval, the signal is 

When we write x(t) it has two meanings. One is value of x at time t and the other is the pairs (x(t), t) 

{x(t)} denotes the continuous time signal. Here {x(t)} is short notation for {x(t), t ε I } where I is the set in 

is short for {x(t), n ε I }.  

Note that in {x(t)} and {x[n]} are dummy variables ie. {x[n]} and {x[t]} refer to the same signal. Some 

Most of the books do not make this distinction clean and use x[n]  to denote signal and x[n0] to denote a 

computers to do processing we are doing digital signal processing. But most of the 

theory is for discrete time signal processing where dependent variable generally is continuous. This is 

sing. Digital Signal Processing tries 

to implement this as closely as possible. Thus what we study is mostly discrete time signal processing 

signals that occur prominently in the study of digital signals and digital 



Defined by    

 
Graphically this is as shown below. 

 

Unit sample sequence is also known as

This plays role akin to the impulse function

 is purely a mathematical construct while in discrete time we can actually generate the

sequence. 

(b) UNIT STEP SEQUENCE:   

Defined by :    

 
Graphically this is as shown below  

(c) EXPONENTIALSEQUENCE: 

The complex exponential signal or sequence {x[n]}

where C  and α are, in general, complex numbers.

Note that by writing  α = e
β
 , we can write the exponential sequence as

Real exponential signals: 

: If C and  are real, we can have one of the several type of behavior illustrated below

  

 

Unit sample sequence is also known as impulse sequence. 

role akin to the impulse function  of continous time. The continues time impulse

is purely a mathematical construct while in discrete time we can actually generate the

 

 

The complex exponential signal or sequence {x[n]}   is defined by  x[n] = C α
n
 

and α are, in general, complex numbers. 

, we can write the exponential sequence as x[n] = c e
βn

 

are real, we can have one of the several type of behavior illustrated below

                 

of continous time. The continues time impulse 

is purely a mathematical construct while in discrete time we can actually generate the impulse 

are real, we can have one of the several type of behavior illustrated below 

 



For   |α| > 1          

         |α| < 1

For   α > 1            

         α < 1            sign of terms in {x[n]}

(d)SINUSOIDAL SIGNAL: 

The sinusoidal signal {x[n]}   is defined by

                                              

Euler's relation allows us to relate complex exponentials and sinusoids as

                                            

      and               

The general discrete time complex exponential can be written in terms of real exponential and 

sinusiodal signals. 

Specifically if we write C and α in polar form

Thus for |α| = 1 , the real and imaginary part

                |α| < 1, they correspond to sinusoidal sequence multiplied by a decaying exponential,

                |α| > 1 , they correspond to sinusiodal sequence multiplied by a growing exponential

  

Generating Signals with MATLAB 

MATLAB, acronym for MATrix LABoratory has become a very popular software environment for 

complex based study of signals and systems. Here we give some sample programmes

elementary signals discussed above. For details one should consider MATLAB manual or read help 

files.  

In MATLAB, ones(M,N) is an M-

zeros. We may use those two matrices to generate

                                

               

               

 magnitude of the signals grows exponentially,

|α| < 1          It is decaying exponential.

 all terms of {x[n]} have same sign,

sign of terms in {x[n]}  alternates. 

is defined by       

 

Euler's relation allows us to relate complex exponentials and sinusoids as 

     

 

The general discrete time complex exponential can be written in terms of real exponential and 

and α in polar form    and  then 

 

, the real and imaginary parts of a complex exponential sequence are sinusoidal.

|α| < 1, they correspond to sinusoidal sequence multiplied by a decaying exponential,

|α| > 1 , they correspond to sinusiodal sequence multiplied by a growing exponential

MATLAB, acronym for MATrix LABoratory has become a very popular software environment for 

complex based study of signals and systems. Here we give some sample programmes 

elementary signals discussed above. For details one should consider MATLAB manual or read help 

-by-N matrix of ones, and zeros(M,N) is an M-

We may use those two matrices to generate impulse and step sequence.  

 

 

 

magnitude of the signals grows exponentially, 

It is decaying exponential. 

all terms of {x[n]} have same sign,  

The general discrete time complex exponential can be written in terms of real exponential and 

s of a complex exponential sequence are sinusoidal.  

|α| < 1, they correspond to sinusoidal sequence multiplied by a decaying exponential,  

|α| > 1 , they correspond to sinusiodal sequence multiplied by a growing exponential. 

MATLAB, acronym for MATrix LABoratory has become a very popular software environment for 

 to generate the 

elementary signals discussed above. For details one should consider MATLAB manual or read help 

by-N matrix of 



The following is a program to generate and display impulse sequence.

  

  

  

Here >> indicates the MATLAB prompt to type in a command,

vector xas a discrete time signal at time values defined by n. One can add title and lable the axes by 

suitable commands. To generate step sequence we can use the following program

  

    

  

We can use the following program to generate real exponential sequence

  

Note that, in this program, the base alpha is a scalar but the exponent is a vector, hence use of the 

operator  to denote element-by

 

Recap 

   In last lecture you have learnt the following

 

Signals are functions of one or more 
 

Systems are physical models which gives out an output signal in response to an input signals.
 

Trying to identify real-life examples as models of signals and systems, would help us in 

understanding the subject better.

 

 Objectives 

   In this lecture you will learn the following

The following is a program to generate and display impulse sequence. 

indicates the MATLAB prompt to type in a command, stem(n,x) depicts the data contained in 

a discrete time signal at time values defined by n. One can add title and lable the axes by 

suitable commands. To generate step sequence we can use the following program 

We can use the following program to generate real exponential sequence 

Note that, in this program, the base alpha is a scalar but the exponent is a vector, hence use of the 

by-element power. 

In last lecture you have learnt the following 

Signals are functions of one or more independent variables. 

Systems are physical models which gives out an output signal in response to an input signals.

life examples as models of signals and systems, would help us in 

understanding the subject better. 

In this lecture you will learn the following 

depicts the data contained in 

a discrete time signal at time values defined by n. One can add title and lable the axes by 

 

 

Note that, in this program, the base alpha is a scalar but the exponent is a vector, hence use of the 

Systems are physical models which gives out an output signal in response to an input signals. 

life examples as models of signals and systems, would help us in 



  

 

In this chapter  we will learn some of the operations performed on the sequences.

Sequence  

Addition 

Scalar Multiplication  

Sequence Multiplication  

Shifting 

Reflection 

  

 

we will learn some of the properties of signals.

Energy of a signal 

Power of a signal 

Periodicity of signals  

Even and Odd signals  

Periodicity property of sinusoidal signals

 

Sequence addition:Let {x[n]} and {y[n]}be two sequences. The sequence addition is defined as term by 

term addition. Let {z[n]} be the resulting sequence

where each  term                                              

                                                           {x[n]} + {y[n]} = {x[n] + y[n]}

Scalar multiplication:Let a be a scalar. We will take

signals, and take  to be a complex number if

otherwise stated we will consider complex valued sequences. Let the resulting sequence be denoted 

by  {w[n]} 

is defined by                                                 

each term is multiplied by a  We will use the notation

Note: If we take the set of all sequences and define these two operations as addition and scalar 

multiplication they satisfy all the properties of a linear 

 

  Sequence multiplication: 

Let {x[n]} and  {y[n]} be two sequences, and {z[n]} be resulting sequence

                                                             

where                                                            

The notation used for this will be

 

 

Now we consider some operations based on independent variable

Shifting: 

This is also known as translation. Let us shift a sequence

be{y[n]} 

                                                      

we will learn some of the operations performed on the sequences.

will learn some of the properties of signals. 

Periodicity property of sinusoidal signals 

{x[n]} and {y[n]}be two sequences. The sequence addition is defined as term by 

term addition. Let {z[n]} be the resulting sequence 

{z[n]} = {x[n]} + {y[n]} 

                                              z[n] = x[n] + y[n]We will use the following notation

{x[n]} + {y[n]} = {x[n] + y[n]} 

be a scalar. We will take a to be real if we consider only the real valued 

to be a complex number if we are considering complex valued sequence. Unless 

otherwise stated we will consider complex valued sequences. Let the resulting sequence be denoted 

{w[n]}  =  a {x[n]} 

                                                  

w[n] = ax[n] 

We will use the notation                        

a {w[n]} = {aw[n]} 

Note: If we take the set of all sequences and define these two operations as addition and scalar 

multiplication they satisfy all the properties of a linear vector space. 

{y[n]} be two sequences, and {z[n]} be resulting sequence 

                   {z[n]} = {x[n]}{y[n]} 

                                                             z[n] =  x[n] y[n] 

The notation used for this will be              {x[n]} {y[n]} = {x[n] y[n]} 

Now we consider some operations based on independent variable n. 

known as translation. Let us shift a sequence  {x[n]} by  n0 units, and the resulting sequence 

   

we will learn some of the operations performed on the sequences. 

{x[n]} and {y[n]}be two sequences. The sequence addition is defined as term by 

lowing notation  

to be real if we consider only the real valued 

we are considering complex valued sequence. Unless 

otherwise stated we will consider complex valued sequences. Let the resulting sequence be denoted 

Note: If we take the set of all sequences and define these two operations as addition and scalar 

units, and the resulting sequence 



where    is the operation of shifting the sequence right by n

x[n - n0]. We will use short notation

Figure below show some examples of shifting.

               {x[n]} 

  

                {x[n-2]} 

  

                {x [n+1]} 

 

Reflection: 

Let {x[n]} be the original sequence, and {y[n]} be reflected sequence, then y[n] is defined by

                    {x[n]} 

is the operation of shifting the sequence right by n0 unit. The terms are defined

]. We will use short notation {x[n - n0]} to denote shift by n0. 

Figure below show some examples of shifting. 

 

Consider the figure to the left. 

 

A negative value of n0 means shift 

 

A positive value of n0 means shift towards left.

Let {x[n]} be the original sequence, and {y[n]} be reflected sequence, then y[n] is defined by

y[n] = x[-n] 

unit. The terms are defined by y[n] = 

means shift towards right. 

means shift towards left. 

Let {x[n]} be the original sequence, and {y[n]} be reflected sequence, then y[n] is defined by 



 

We will denote this by {x[-n]} 

When we have complex valued signals, sometimes we reflect and do the complex conjugation, ie, y[n] 

is defined by y[n] = x*[-n], where * denotes complex conjugation. This sequence will be denoted by   

{x*[-n]}. 

We will learn about more complex operations later on. Some of these operations commute, ie. if we 

apply two operations we can interchange their order and some do not commute. For example scalar 

multiplication and reflection commute. 

Then v[n] = z[n] for all n. Shifting and scaling do not commute. 

 

  

         {x[n]}                                          {y[n]} = {x[n-1}            {z[n]} = {y[-n]} 

 



           {x[n]}                              {w[n]} = {x[

  

We can combine many of these operations in one step, for example {y[n]} may be defined as

[3-n]. 

 

 Some Properties of signals 

Energy of a Signal: 

The total energy of a signal {x[n]} is defined by

A signal is referred to as an energy signal, if and only if the total energy of the signal E
 

 

Power of a signal:If {x[n]} is a signal whose energy is not finite, we define power of the signal as

A signal is referred to as a power signal if the power P

An energy signal has a zero power and a power signal has infinite energy. There are signals which are 

neither energy signals nor power signals. For example {x[n]} defined by

power or energy. 

Periodic Signals: 

An important class of signals that we encounter frequently is the class of periodic signals. We say that 

a signal {x[n] is periodic with period N, where N is a positive integer, if the signal is unchanged by the 

time shift of N ie., 

or   x[n] = x[ n + N ]   for all n. 

Since   {x[n]}   is same as {x[n+N]} , it is also periodic so we get

{x[n]} = {x[n+N]} = {x[n+N+N]}

Generalizing this we get {x[n]} = {x[n+kN]}, where k is a positive integer. From

periodic with 2N, 3N,... The fundamental period N

is periodic. 

{w[n]} = {x[-n]}                      {u[n]} = {w[n-1]}                         

We can combine many of these operations in one step, for example {y[n]} may be defined as

The total energy of a signal {x[n]} is defined by 

 

to as an energy signal, if and only if the total energy of the signal Ex

If {x[n]} is a signal whose energy is not finite, we define power of the signal as

 
A signal is referred to as a power signal if the power Px satisfies the condition 

 
An energy signal has a zero power and a power signal has infinite energy. There are signals which are 

neither energy signals nor power signals. For example {x[n]} defined by  x[n] = n  does not have finite 

An important class of signals that we encounter frequently is the class of periodic signals. We say that 

a signal {x[n] is periodic with period N, where N is a positive integer, if the signal is unchanged by the 

{x[n]}  =  {x[n + N]} 

, it is also periodic so we get 

{x[n]} = {x[n+N]} = {x[n+N+N]}  =  {x[n+2N]} 

Generalizing this we get {x[n]} = {x[n+kN]}, where k is a positive integer. From this we see that

periodic with 2N, 3N,... The fundamental period N0 is the smallest positive value N for which the signal 

 

We can combine many of these operations in one step, for example {y[n]} may be defined as y[n] = 2x 

x is finite. 

If {x[n]} is a signal whose energy is not finite, we define power of the signal as 

An energy signal has a zero power and a power signal has infinite energy. There are signals which are 

does not have finite 

An important class of signals that we encounter frequently is the class of periodic signals. We say that 

a signal {x[n] is periodic with period N, where N is a positive integer, if the signal is unchanged by the 

this we see that  {x[n]} is 

is the smallest positive value N for which the signal 



The signal illustrated below is periodic with fundamental period N

By change of variable we can write

we see that 

for all integer values of k positive, negative or zero. By definition, period of a signal is always a positive 

integer N. 

Except for a all zero signal all periodic signals have infinite energy. They may have finite power. Let 

{x[n]} be periodic with period N, then the power P

                 

                         

                              

where k  is largest integer such that 

be same for all terms. We see that k is approximately equal to

large M we get 2M/N  terms and limit 

                                 

Even and odd signals: 

A real valued signal {x[n]}  is referred to as an even signal if it is identical to its time reversed 

counterpart ie, if 

{x[n]} = {x[-n]} 

A real signal is referred to as an odd signal if

An odd signal has value 0 at n = 0 as

Given any real valued signal  {x[n]} we can write it as a sum of an even signal and an odd signal. 

The signal illustrated below is periodic with fundamental period N0 = 4 

By change of variable we can write {x[n]} = {x[n+N]} as   {x[m-N]} = {x[m]} and then arguing as before, 

{x[n]} = {x[n+kN]}, 

for all integer values of k positive, negative or zero. By definition, period of a signal is always a positive 

Except for a all zero signal all periodic signals have infinite energy. They may have finite power. Let 

{x[n]} be periodic with period N, then the power Px is given by 

 

is largest integer such that   kN -1 ≤ M. Since the signal is periodic, sum over one period will 

be same for all terms. We see that k is approximately equal to  M/N (it is integer part of this) and for 

terms and limit   2M/(2M +1)  as M goes to infinite is one we get

 

is referred to as an even signal if it is identical to its time reversed 

is referred to as an odd signal if 

{x[n]} = {-x[-n]} 

An odd signal has value 0 at n = 0 as   x[0] = -x[n] = - x[0] 

 

{x[n]} we can write it as a sum of an even signal and an odd signal. 

N]} = {x[m]} and then arguing as before, 

for all integer values of k positive, negative or zero. By definition, period of a signal is always a positive 

Except for a all zero signal all periodic signals have infinite energy. They may have finite power. Let 

 

 

≤ M. Since the signal is periodic, sum over one period will 

M/N (it is integer part of this) and for 

as M goes to infinite is one we get 

is referred to as an even signal if it is identical to its time reversed 

{x[n]} we can write it as a sum of an even signal and an odd signal. 



Consider the signals 

                      Ev ({x[n]}) = {xe[n]} = {1/2 (x[n] + x[

and               Od ({x[n]}) = {xo[n]} = {1/2(x[n] 

We can see easily that 

                             {x[n]} = {xe[n]} + {xo

The signal {xe[n]} is called the even part of 

signal. Similarly, {xo[n]} is called the odd part of {x[n]} and is an odd signal. When we have complex 

valued signals we use a slightly different terminology. A complex valued signal {x[n]} is refer

a conjugate symmetric signal if 

                                 {x[n]} = {x*[-n]} 

where x* refers to the complex conjugate of x. Here we do reflection and complex conjugation. If 

{x[n]} is real valued this is same as an even signal.

A complex signal {x[n]} is referred to as a conjugate antisymmetric signal if

We can express any complex valued signal as sum conjugate symmetric and conjugate antisymmetric 

signals. We use notation similar to above

                   Ev({x[n]}) = {xe[n]} = {1/2(x[n] + x*[

and             Od ({[n]}) = {xo[n]} = {1/2(x[n] 

then            {x[n]} = {xe[n]} + {xo[n]} 

We can see easily that {xe[n]} is conjugate symmetric signal and

signal. These definitions reduce to even and odd signals in case signals takes only real values.

Periodicity properties of sinusoidal signals:

Let us consider the signal. We see that if we replace

the signal with frequency 

continuous time signal

time we need to consider frequency interval of length 2π only. As we increase

oscillates more and more rapidly. But if we further increase frequency from π to 2π the rate of 

oscillations decreases. This can be seen easily by plotting signal

The signal  is not periodic for every value of. For the signal to be periodic with period N 

we should have 

                           

that is  should be some multiple of 2π.

          

or      

Thus signal  is periodic if and only if

Above observations also hold for complex exponential signal

 Discrete-Time Systems: 

 

Consider the signals 

[n]} = {1/2 (x[n] + x[-n])} 

[n]} = {1/2(x[n] -x [-n])} 

o[n]} 

[n]} is called the even part of {x[n]}. We can verify very easily that {xe

[n]} is called the odd part of {x[n]} and is an odd signal. When we have complex 

valued signals we use a slightly different terminology. A complex valued signal {x[n]} is refer

where x* refers to the complex conjugate of x. Here we do reflection and complex conjugation. If 

{x[n]} is real valued this is same as an even signal.

signal {x[n]} is referred to as a conjugate antisymmetric signal if 

{x[n]} = {-x*[-n]} 

We can express any complex valued signal as sum conjugate symmetric and conjugate antisymmetric 

signals. We use notation similar to above 

[n]} = {1/2(x[n] + x*[-n])} 

[n]} = {1/2(x[n] - x*[-n])} 

 

[n]} is conjugate symmetric signal and {xo[n]} is conjugate antisymmetric

signal. These definitions reduce to even and odd signals in case signals takes only real values.

Periodicity properties of sinusoidal signals: 

Let us consider the signal. We see that if we replace  by  we get the same signal. In fact 

 and so on. This situation is quite different from 

 where each frequency is different. Thus in discrete 

time we need to consider frequency interval of length 2π only. As we increase 

apidly. But if we further increase frequency from π to 2π the rate of 

oscillations decreases. This can be seen easily by plotting signal  for several values of.

is not periodic for every value of. For the signal to be periodic with period N 

 

should be some multiple of 2π. 

is periodic if and only if  is a rational number. 

Above observations also hold for complex exponential signal  

          

e[n]} is an even 

[n]} is called the odd part of {x[n]} and is an odd signal. When we have complex 

valued signals we use a slightly different terminology. A complex valued signal {x[n]} is referred to as 

where x* refers to the complex conjugate of x. Here we do reflection and complex conjugation. If 

{x[n]} is real valued this is same as an even signal.  

We can express any complex valued signal as sum conjugate symmetric and conjugate antisymmetric 

[n]} is conjugate antisymmetric 

signal. These definitions reduce to even and odd signals in case signals takes only real values. 

we get the same signal. In fact 

and so on. This situation is quite different from 

where each frequency is different. Thus in discrete 

  to π signal 

apidly. But if we further increase frequency from π to 2π the rate of 

for several values of. 

is not periodic for every value of. For the signal to be periodic with period N > 0, 



A discrete-time system can be thought of as a transformation or operator that maps an input sequence 

{x[n]}  to an output sequence   {yk[n]}

By placing various conditions on T(

Basic System Properties 

• Systems with or without memory:

• Invertibility 

• Causality 

• Stability 

• Time invariance 

• Linearity 
 

Systems with or without memory: 

A system is said to be memoryless if the output for each value of the independent variable at a given 

time n depends only on the input value at time n. For example system specified by the relationship

is memoryless. A particularly simple memoryless

In general we can write input-output relationship for memoryless system as

Not all systems are memoryless. A simple example of system with memory is a delay defined by

A system with memory retains or stores information about input values at times other than the 

current input value. 

Invertibility: 

A system is said to be invertible if the input signal {x[n]} can be recovered from the output signal {y

For this to be true two different input signals should produce two different outputs. If some different 

input signal produce same output signal then by processing output we can not say which input 

produced the output. 

Example of an invertible system is                   

then                                                       

Example if a non-invertible system is

 
That is the system produces an all zero sequence for any input sequence. Since every input seque

gives all zero sequence, we can not find out which input produced the output.

The system which produces the sequence {x[n]} from sequence {y

communication system, decoder is an inverse of the encoder.
 

 

time system can be thought of as a transformation or operator that maps an input sequence 

[n]} 

By placing various conditions on T(.) we can define different classes of systems. 

Systems with or without memory: 

 

if the output for each value of the independent variable at a given 

time n depends only on the input value at time n. For example system specified by the relationship

y[n] = cos (x[n]) + 3 

is memoryless. A particularly simple memoryless system is the identity system defined by

y[n] = x[n] 

output relationship for memoryless system as 

y[n] = g(x[n]) 

Not all systems are memoryless. A simple example of system with memory is a delay defined by

y[n] = x[n-1] 

A system with memory retains or stores information about input values at times other than the 

A system is said to be invertible if the input signal {x[n]} can be recovered from the output signal {y

For this to be true two different input signals should produce two different outputs. If some different 

input signal produce same output signal then by processing output we can not say which input 

                  

           

invertible system is                       

That is the system produces an all zero sequence for any input sequence. Since every input seque

gives all zero sequence, we can not find out which input produced the output. 

The system which produces the sequence {x[n]} from sequence {yk[n]} is called the inverse system. In 

communication system, decoder is an inverse of the encoder. 

time system can be thought of as a transformation or operator that maps an input sequence 

 

if the output for each value of the independent variable at a given 

time n depends only on the input value at time n. For example system specified by the relationship 

system is the identity system defined by 

Not all systems are memoryless. A simple example of system with memory is a delay defined by 

A system with memory retains or stores information about input values at times other than the 

A system is said to be invertible if the input signal {x[n]} can be recovered from the output signal {yk[n]}. 

For this to be true two different input signals should produce two different outputs. If some different 

input signal produce same output signal then by processing output we can not say which input 

That is the system produces an all zero sequence for any input sequence. Since every input sequence 

[n]} is called the inverse system. In 



Causality : 

A system is causal if the output at anytime depends only on values of the input at the present time 

and in the past. 

All memoryless systems are causal. An accumulator system defined by

is also causal. The system defined by

is noncausal. 

For real time system where n actually denoted time causality is mportant. Causality is not an 

essential constraint in applications where n is not time, for example, image processing. If we are 

doing processing on recorded data, then also causality may not be required.

Stability : 

There are several definitions for stability. Here we will consider bounded input bonded output (BIBO) 

stability. A system is said to be BIBO stable if every bounded input 

say that a signal {x[n]} is bounded if

The moving average system 

is stable as y[n] is sum of finite numbers and so it is bounded. The accumulator system defined by

is unstable. If we take {x[n]} = {u[n]}, the unit step then y[0] = 1, y[1] = 2, y[2] = 3,

≥ 0 so y[n]grows without bound. 

Time invariance : 

A system is said to be time invariant if the behavior and characteristics of the system do not change 

with time.Thus a system is said to be time invariant if a time delay or time advance in the input signal 

leads to identical delay or advance in the output signal. Mathematically if

then                                                       

Let us consider the accumulator system

If the input is now   {x1[n]} = {x[n-n0]}

A system is causal if the output at anytime depends only on values of the input at the present time 

y[n] = f(x[n], x[n-1],...) 

All memoryless systems are causal. An accumulator system defined by 

 

also causal. The system defined by 

 

For real time system where n actually denoted time causality is mportant. Causality is not an 

essential constraint in applications where n is not time, for example, image processing. If we are 

ocessing on recorded data, then also causality may not be required. 

There are several definitions for stability. Here we will consider bounded input bonded output (BIBO) 

stability. A system is said to be BIBO stable if every bounded input produces a bounded output. We 

say that a signal {x[n]} is bounded if 

|x[n]| < M < ∞    for all  n 

 

is stable as y[n] is sum of finite numbers and so it is bounded. The accumulator system defined by

 

{x[n]} = {u[n]}, the unit step then y[0] = 1, y[1] = 2, y[2] = 3,    are y[n] = n +1, n 

A system is said to be time invariant if the behavior and characteristics of the system do not change 

time.Thus a system is said to be time invariant if a time delay or time advance in the input signal 

leads to identical delay or advance in the output signal. Mathematically if 

{y[n]} = T ({x[n]}) 

      {y[n-n0]} = T({x[n-n0]})        for any n0 

Let us consider the accumulator system 

 

]} then the corresponding output is 

A system is causal if the output at anytime depends only on values of the input at the present time 

For real time system where n actually denoted time causality is mportant. Causality is not an 

essential constraint in applications where n is not time, for example, image processing. If we are 

There are several definitions for stability. Here we will consider bounded input bonded output (BIBO) 

produces a bounded output. We 

is stable as y[n] is sum of finite numbers and so it is bounded. The accumulator system defined by 

are y[n] = n +1, n 

A system is said to be time invariant if the behavior and characteristics of the system do not change 

time.Thus a system is said to be time invariant if a time delay or time advance in the input signal 



The shifted output signal is given by

The two expression look different, but 

by              l = k  - n0  in the first sum then we see that

Hence,   {y[n]} = {y[n-n0]} and the system is time

defined by     y[n] = nx[n] 

if                    

                      

while              

and so the system is not time-invariant. It is time varying. We can also see this by giving a counter 

example. Suppose input is 

 then output is  which is definitely not a shifted version version of all zero sequence.

Linearity : 

This is an important property of the system. We will see later that if we have system which is linear 

and time invariant then it has a very co

important property of superposition: if an input consists of weighted sum of several signals, the nthe 

output is also weighted sum of the responses of the system to each of those input signals. 

Mathematically let  be the response of the system to the input

response of the system to the input. Then the system is linear if:

Additivity: The response to 

Homogeneity: The response to 

considering only real signals and  

signals. 

Continuity: Let us consider 

that 

Let the corresponding output signals be denoted by

We say that system posseses the continuity property if the response of the system to the limiting 

input  is limit of the responses.

The additivity and continuity properties can be replaced by requiring that system is additive for 

countably infinite number of signals i.e. response to

 

 

The shifted output signal is given by 

 

The two expression look different, but infact they are equal. Let us change the index of summation 

in the first sum then we see that 

 

        

]} and the system is time-invariant. As a second example consider the system 

 

 

 

invariant. It is time varying. We can also see this by giving a counter 

 then output is all zero sequence. If the input is

which is definitely not a shifted version version of all zero sequence.

This is an important property of the system. We will see later that if we have system which is linear 

and time invariant then it has a very compact representation. A linear system possesses the 

important property of superposition: if an input consists of weighted sum of several signals, the nthe 

output is also weighted sum of the responses of the system to each of those input signals. 

be the response of the system to the input  and let

response of the system to the input. Then the system is linear if: 

 is  

 is , where  is any real number if we are 

 is any complex number if we are considering complex valued 

 be countably infinite number of signals such 

 

 

Let the corresponding output signals be denoted by  and 

We say that system posseses the continuity property if the response of the system to the limiting 

is limit of the responses. 

 

The additivity and continuity properties can be replaced by requiring that system is additive for 

mber of signals i.e. response to 

infact they are equal. Let us change the index of summation 

invariant. As a second example consider the system 

invariant. It is time varying. We can also see this by giving a counter 

input is 

which is definitely not a shifted version version of all zero sequence. 

This is an important property of the system. We will see later that if we have system which is linear 

mpact representation. A linear system possesses the 

important property of superposition: if an input consists of weighted sum of several signals, the nthe 

output is also weighted sum of the responses of the system to each of those input signals. 

and let  be the 

is any real number if we are 

is any complex number if we are considering complex valued 

be countably infinite number of signals such 

 

We say that system posseses the continuity property if the response of the system to the limiting 

The additivity and continuity properties can be replaced by requiring that system is additive for 



Most of the books do not mention the continuity property. They state only finite additivity and 

homogeneity. But from finite additivity we can not deduce countable additivity. This distinction 

becomes very important in continuous time systems.

A system can be linear without being time invariant and it can be time invariant without being linear. 

If a system is linear, an all zero input sequence will produce a all zero output sequence. Let

 denote the all zero sequence, then. If

 

or,    

Consider the system defined by     

This system is not linear. This can be verified in several ways. If the input is all zero sequence

output is not an all zero sequence. Alth

system is nonlinear. The output of this system can be represented as sum of a linear system and 

another signal equal to the zero input response. In this case the linear system is

and the zero-input response is                

Such systems correspond to the class of incrementally linear system. System is linear in term of 

differnce signal i.e if we define

 and  the system is linear. 

 

The Convolution Sum: 

The representation of discrete time signals in terms of impulses.

The key idea is to express an arbitrary discrete time signal as weighted sum of time shifted impulses.

Consider the product of signal 

and 

Using these relations we can write 

                                                                             

A graphical illustration is shown below

        is       

Most of the books do not mention the continuity property. They state only finite additivity and 

homogeneity. But from finite additivity we can not deduce countable additivity. This distinction 

very important in continuous time systems. 

A system can be linear without being time invariant and it can be time invariant without being linear. 

If a system is linear, an all zero input sequence will produce a all zero output sequence. Let

all zero sequence, then. If  then by homogeneity property

 

This system is not linear. This can be verified in several ways. If the input is all zero sequence

output is not an all zero sequence. Although the defining equation is a linear equation is x and y the 

system is nonlinear. The output of this system can be represented as sum of a linear system and 

another signal equal to the zero input response. In this case the linear system is 

 

                    for all n 

Such systems correspond to the class of incrementally linear system. System is linear in term of 

differnce signal i.e if we define  and. Then in terms of

The representation of discrete time signals in terms of impulses. 

The key idea is to express an arbitrary discrete time signal as weighted sum of time shifted impulses.

 and the impulse sequence. We know that 

 

 

 

                                                                                                                                  

A graphical illustration is shown below 

 

Most of the books do not mention the continuity property. They state only finite additivity and 

homogeneity. But from finite additivity we can not deduce countable additivity. This distinction 

A system can be linear without being time invariant and it can be time invariant without being linear. 

If a system is linear, an all zero input sequence will produce a all zero output sequence. Let 

then by homogeneity property 

This system is not linear. This can be verified in several ways. If the input is all zero sequence , the 

ough the defining equation is a linear equation is x and y the 

system is nonlinear. The output of this system can be represented as sum of a linear system and 

 

Such systems correspond to the class of incrementally linear system. System is linear in term of 

and. Then in terms of 

The key idea is to express an arbitrary discrete time signal as weighted sum of time shifted impulses. 

 

                                                      (4.1) 



 
 

Fig 4.1 

Given an arbitrary sequence we can write it as a linear combination of shifted unit 

impulses , where the weights of their combination are x[k], the k
th

 term of the sequence. 

For any given n, in the summation 

 

there is only one term which is non-zero and so we do not have to worry about the convergence. 

Consider the unit step sequence {u[n]}. Since , and , it has 

representation 

 

The Discrete Time Impulse response of linear Time Invariant System: 

We use linearity property of the system to represent its response in terms of its response shifted 

impulse sequences. The time invariance further simplifies their representation. Let  be the 

input signal and  be the output sequence, and T( ) represent the linear system 



 

 

using (4.1) 

Now we use the linearity property of the system we get 

 

 

Note that without countable additivity property the last step is not justified (From finite additivity we 

can not get countable additivity). Let us define 

 

i.e.   is the response of the system to a delayed unit sample sequence. Then we see 

 

The output signal is linear combination of the signals. 

In general the responses need not be related to each other for different values of k. 

However, if linear system is also time-invariant, then these responses are related. Let us define 

impulse response (unit sample response) 

 

Then 

 

          

For the LTI system output {y[n]} is given by 

                                                                                                                    (4.2) 

This result is know as convolution of sequences and. Thus output signal for an LTI system is 

convolution of input signal and the impulse response. This operation is symbolically 

represented by 

                                                                                                                          (4.3) 

We see that equation (4.2) expresses the response of an LTI system to an arbitrary signal in terms of 

the systems response to unit impulse. Thus an LTI system is completely specified by its impulse 

response. 

The n
th

 term   in the equation (4.2) is given by 

                                                                                                                        (4.4) 

This is known as convolution sum. To convolve two sequences, we have to calculate this convolution 



sum for all values of n. Since right hand side is sum of infinite series, we assume that this sum is well 

defined. 

Example: 

Consider and shown below 

 

Fig  4.2  

Since only   and   one non zero we have 

 

These one illustrated below 

 

Fig 4.3 

Here we have done calculation according to equation (4.2). 

To do calculation according to equation (4.4) we first plot -  as function of k and 

 as function of k for some fixed values of n. Then multiply sequence and  term by 

term to obtain sequence. Than final the sum of the terms of the sequence. This is illustrated below 



 

Fig 4.4 

One can see easily that for other value of n  is all zero sequence and for these value 

of n, output is zero. 

 

Properties of discrete-time linear convolution and system properties 

If  and  are sequences, then the following useful properties of the discrete 

time convolution can be shown to be true 

1. Commutativity 

 

2. Associativity 

 ` 

3. Distributivity over sequence addition 

 

4. The identity sequence  

 

5. Delay operation 

 

6. Multiplication by a constant 



 

Note that these properties are true only if the convolution sum (4.4) exists for every n. 

If the input output relation is defined by convolution i.e. if 

 

For a given sequence , then the system is linear and time invariant. This can be verified using 

the properties of the convolution listed above. The impulse response of the systems is obviously. 

In terms of LTI system, commutative property implies that we can interchange input and impulse 

response. 

  

 
Fig 4.5 

  

The distributive property implies that parallel interconnection of two LTI system is an LTI system with 

impulse response as sum of two impulse responses. 

  

 
Fig 4.6 

  

The associativity property implies that series connection of two LTI system is an LTI system. Where 

impulse response is convolution of individual responses. The commutativity property implies that we 

can interchange the order of the two system in series. 

  

 
Fig 4.7 



  

Since an LTI system is completely characterized by its impulse response, we can specify system- 

properties in terms of impulse response. 

1. Memoryless system: From equation (4.4) we see that an LTI system is memory less if and only 

if. 

2. Causality for LTI system: The output of a causal system depends only on preset and past-

values of the input. In order for a system to be causal  must not depend on  for. 

From equation (4.4) we see that for this to be true, all of the terms  that multiply 

values of  for  must be zero.  

  

put   to get 

  

or  

Thus impulse response  for a causal LTI system must satisfy the condition h[n] = 0 for n 

< 0. 

If the impulse response satisfies this condition, the system is causal. For a causal system we 

can write          

 

or              

 We say a sequence  is causal if , for n < 0. 

3. Stability for LTI system: A system is stable if every bounded input produces a bonded output. 

Consider  input  such that    for all n. 

       

Taking absolute value 

 

From triangle inequality for complex numbers  we get 

 

          

Using property that  



Since each  we get 

 

          

If the impulse response is absolutely summable, that is 

                                                                                                                                    (4.5) 

then       

and  is bounded for all n, and hence system is stable. Therefore equation (4.5) is sufficient 

condition for system to be stable. This condition is also necessary. This is prove by showing that if 

condition (4.5) is violated then we can find a bounded input which produces an unbounded output. 

Let 

 

Let       

           

This is a bounded sequence 

 

                                      

                                

So y[0] is unbounded. Thus, the stability of a discrete time linear time invariant system is equivalent to 

absolute summability of the impulse response. 

 

Causal LTI systems described by difference equations 

An important subclass of linear time invariant system is one where the input and output sequences 

satisfy constant coefficient linear difference equation 



                                                                                                                    

(4.6) 

 

 

The constants,  is input sequence and  is output sequence. We can solve equation 

(4.6) in a manner analogous to the differential equation solution, but for discrete time we can use a 

different approach. Assume that. We can write 

                                                                                          

(4.7) 

In order to find  we need previous N values of the output. Thus if we know the input 

sequence  and a set of initial condition  we can find values of. 

Example: Consider the difference equation 

 

then                     

Let us take  

 

 

        

 

         

 

This system is not linear for all values of the initial condition. For a linear system all zero input 

sequence must produce a all zero output sequence. But if C is different from zero, then output 

sequence is not an all system is linear. System is not time invariant in general. Suppose input 

is  than we have 

 

If we use input as  then 

 

It is obvious that second sequence is not a shifted version of the first sequence unless. The system is 

linear time invariant if we assume initial rest condition, i.e. if  then. With initial rest 

condition the system described by constant coefficient-linear difference equation is linear, time 

invariant and causal. 

The equation of the form (4.7) is called recursive equation if , since it specifies a recursive 



algorithm for finding out the output sequence. In special case

                                                                     

Here  is completely specified in terms of the input. Thus this equation is called non

equation. If input , then we see that the output is equal to impulse response

The impulse response is non-zero for finitely many values. A system with the property that impulse 

response is non-zero only for finitely many values is known as finite impulse response (FIR) system. A 

system described by non-recursive equation is always F

generally has a response which is non

infinite impulse response system (IIR). A system described by recessive equation may have a finite 

impulse response. 

 

The Discrete Time Fourier Transform

In the previous chapter we used the time domain representation of the signal. Given any signal {x[n]} 

we can write it as linear combination of basic signals.

been found very useful is frequency domain representation. In the mid 1960s an algorithm for 

calculation of the Fourier transform was discovered, known as the Fast

algorithm. This spurred the development of digital signal processing in many areas.

The Fourier representation of signals derives its importance from the fact that exponential signals 

are eigenfunctions for the discrete time LTI systems. What we mean by this is that if

signal to an LTI system then output is given by. Let us co

Then the output is given by 

= 

 = 
 

 = 

 = 
 

 

where  assuming that the summation in right

output is same exponential sequence multiplied by a constant that depends

algorithm for finding out the output sequence. In special case , we have 

                                                     

is completely specified in terms of the input. Thus this equation is called non

, then we see that the output is equal to impulse response

 

zero for finitely many values. A system with the property that impulse 

zero only for finitely many values is known as finite impulse response (FIR) system. A 

recursive equation is always FIR. A system described recursive equation 

generally has a response which is non-zero for infinite duration and such systems one known as 

infinite impulse response system (IIR). A system described by recessive equation may have a finite 

The Discrete Time Fourier Transform 

In the previous chapter we used the time domain representation of the signal. Given any signal {x[n]} 

we can write it as linear combination of basic signals.  Another representation of signals that has 

useful is frequency domain representation. In the mid 1960s an algorithm for 

calculation of the Fourier transform was discovered, known as the Fast-Fourier Transform (FFT) 

algorithm. This spurred the development of digital signal processing in many areas.

The Fourier representation of signals derives its importance from the fact that exponential signals 

are eigenfunctions for the discrete time LTI systems. What we mean by this is that if

signal to an LTI system then output is given by. Let us consider an LTI system with impulse response. 

 

 

 

 

assuming that the summation in right-hand side converges. Thus 

output is same exponential sequence multiplied by a constant that depends on the value of.

 
Fig 5.1 

                                      (4.8) 

is completely specified in terms of the input. Thus this equation is called non-recursive 

, then we see that the output is equal to impulse response 

zero for finitely many values. A system with the property that impulse 

zero only for finitely many values is known as finite impulse response (FIR) system. A 

IR. A system described recursive equation 

zero for infinite duration and such systems one known as 

infinite impulse response system (IIR). A system described by recessive equation may have a finite 

In the previous chapter we used the time domain representation of the signal. Given any signal {x[n]} 

Another representation of signals that has 

useful is frequency domain representation. In the mid 1960s an algorithm for 

Fourier Transform (FFT) 

algorithm. This spurred the development of digital signal processing in many areas.  

The Fourier representation of signals derives its importance from the fact that exponential signals 

are eigenfunctions for the discrete time LTI systems. What we mean by this is that if  is input 

nsider an LTI system with impulse response. 

 

 

 

 

hand side converges. Thus 

on the value of. 



The constant  for a specified value of

In the analysis of LTI system, the usefulness of decomposing a more general signal in terms of 

eigenfunctions can be seen from the following example. Let

combination of two exponentials

From the eigenfunction property and superposition property the response

More generally if  

then                                                          

 

Thus if input signal can be represented by a linear combination of exponential signals, the output can 

also be represented by a linear combination of same exponentials, moreover the 

linear combination in the output is obtained by multiplying,

representation by corresponding eigen value

represent a large class of signals in terms of comp

representation of aperiodic signals in terms of signals.

The Discrete Time Fourier Transform (DTFT)

Here we take the exponential signals to be

The representation is motivated by the Harmonic analysis, but instead of following the historical 

development of the representation we give directly the defining equation.

Let  be discrete time signal such that

summable.  

The sequence  can be represented by a Fourier integral of the form

 

 

where 

 

 

Equation (5.1) and (5.2) give the Fourier representation of the signal. Equation (5.1) is referred as 

synthesis equation or the inverse discrete time Fourier transform (IDTFT) and

transform in the analysis equation. 

Fourier transform of a signal in general is a complex valued function, we can write

 

 

for a specified value of  is the eigenvalue associated with eigenfunction.

In the analysis of LTI system, the usefulness of decomposing a more general signal in terms of 

can be seen from the following example. Let  correspond to a linear 

combination of two exponentials 

 

From the eigenfunction property and superposition property the response  is given by

 

= 
 

                                                           = 
 

Thus if input signal can be represented by a linear combination of exponential signals, the output can 

also be represented by a linear combination of same exponentials, moreover the coefficient of the 

linear combination in the output is obtained by multiplying, , the coefficient in the input 

representation by corresponding eigen value The procedure outlined above is useful if we can 

represent a large class of signals in terms of complex exponentials. In this chapter we will consider 

representation of aperiodic signals in terms of signals. 

The Discrete Time Fourier Transform (DTFT) 

Here we take the exponential signals to be  where  is a real number.  

motivated by the Harmonic analysis, but instead of following the historical 

development of the representation we give directly the defining equation.  

be discrete time signal such that  that is  sequence is absolutely 

be represented by a Fourier integral of the form 

 

 

Equation (5.1) and (5.2) give the Fourier representation of the signal. Equation (5.1) is referred as 

synthesis equation or the inverse discrete time Fourier transform (IDTFT) and equation (5.2)is Fourier 

  

Fourier transform of a signal in general is a complex valued function, we can write 

 

is the eigenvalue associated with eigenfunction.  

In the analysis of LTI system, the usefulness of decomposing a more general signal in terms of 

correspond to a linear 

is given by 

 

 

Thus if input signal can be represented by a linear combination of exponential signals, the output can 

coefficient of the 

, the coefficient in the input 

The procedure outlined above is useful if we can 

lex exponentials. In this chapter we will consider 

motivated by the Harmonic analysis, but instead of following the historical 

sequence is absolutely 

(5.1) 

(5.2) 

Equation (5.1) and (5.2) give the Fourier representation of the signal. Equation (5.1) is referred as 

equation (5.2)is Fourier 

(5.3) 



where  is the real part of 

use a polar form 

 

 

where  is magnitude and 

simply, the spectrum to refer to. Thus

called the phase spectrum.  

From equation (5.2) we can see that

interpret (5.1) as Fourier coefficients in the representation of a perotic function. In the Fourier series 

analysis our attention is on the periodic function, here we are concerned with the representation of 

the signal. So the roles of the two equation are interchanged compared to the Fourier series analysis 

of periodic signals.  

Now we show that if we put equation (5.2) in equation (5.1) we indeed get the signal.

Let 

where we have substituted 

Since we have used n as index on the left hand side we have used m as the index variable for the sum 

defining the Fourier transform. Under our assumption that

we can interchange the order of integration and summation. Thus

 

The integral with the parentheses can be evaluated as

if          then   

and    

if    then

 

= 

 = 

 = 0 

 

Thus in equation (5.5) there is only one non

 and  is imaginary part of the function. We can also 

 

 is the phase of. We also use the term Fourier spectrum or 

simply, the spectrum to refer to. Thus  is called the magnitude spectrum and 

From equation (5.2) we can see that  is a periodic function with period  i.e.. We can 

interpret (5.1) as Fourier coefficients in the representation of a perotic function. In the Fourier series 

analysis our attention is on the periodic function, here we are concerned with the representation of 

signal. So the roles of the two equation are interchanged compared to the Fourier series analysis 

Now we show that if we put equation (5.2) in equation (5.1) we indeed get the signal.  

 
 from (5.2) into equation (5.1) and called the result as.

Since we have used n as index on the left hand side we have used m as the index variable for the sum 

defining the Fourier transform. Under our assumption that  sequence is absolutely summable 

he order of integration and summation. Thus  

 

The integral with the parentheses can be evaluated as 

 

 

 

 

Thus in equation (5.5) there is only one non-zero term in RHS, corresponding to 

is imaginary part of the function. We can also 

(5.4) 

is the phase of. We also use the term Fourier spectrum or 

 is 

i.e.. We can 

interpret (5.1) as Fourier coefficients in the representation of a perotic function. In the Fourier series 

analysis our attention is on the periodic function, here we are concerned with the representation of 

signal. So the roles of the two equation are interchanged compared to the Fourier series analysis 

 

equation (5.1) and called the result as.  

Since we have used n as index on the left hand side we have used m as the index variable for the sum 

sequence is absolutely summable 

(5.5) 

 

 

 

, and we 



get. This result is true for all values of n and so equation (5.1) is indeed a representation of 

signal  in terms eigenfunctions

In above demonstration we have as

of signals which can be represented by equation (5.1) is equivalent to considering the convergence of 

the infinite sum in equation (5.2). If we fix a value of

complex valued series, whose partial sum is given by

The limit as  if the partial sum

 

 

 

Since the limit 

 exists for every. Furthermore it can be shown that the series converges uniformly to a continuous 

function of.  

If a sequence has only finitely many non

transform exists. Since a stable sequence is by defin

Fourier transform also exits.  

Example: Let 

Fourier transform of this sequence will exist if it is absolutely summable. We have

This is a geometric series and sum exists if

Thus the Fourier transform of the sequence

get. This result is true for all values of n and so equation (5.1) is indeed a representation of 

in terms eigenfunctions   

In above demonstration we have assumed that  is absolutely summable. Determining the class 

of signals which can be represented by equation (5.1) is equivalent to considering the convergence of 

the infinite sum in equation (5.2). If we fix a value of  then, RHS of equation (5.2) is a 

plex valued series, whose partial sum is given by 

 

if the partial sum  exists if the series is absolutely summable.

 

by triangle inequality 

 

 exists by our assumption the limit 

every. Furthermore it can be shown that the series converges uniformly to a continuous 

If a sequence has only finitely many non-zero terms then it is absolutely summable and so the Fourier 

transform exists. Since a stable sequence is by definition, an absolutely summable sequence, its 

  

Fourier transform of this sequence will exist if it is absolutely summable. We have 

 

This is a geometric series and sum exists if , in that case 

 

transform of the sequence  exists if. The Fourier transform is

get. This result is true for all values of n and so equation (5.1) is indeed a representation of 

is absolutely summable. Determining the class 

of signals which can be represented by equation (5.1) is equivalent to considering the convergence of 

then, RHS of equation (5.2) is a 

exists if the series is absolutely summable.  

  

  

  

every. Furthermore it can be shown that the series converges uniformly to a continuous 

zero terms then it is absolutely summable and so the Fourier 

ition, an absolutely summable sequence, its 

exists if. The Fourier transform is  



 

 

 

 
               

                                                                                                                    

 

Where the last equality follows from sum of a geometric series, which exists if

Absolute summability is a sufficient condition for the existence of a Fourier transform. Fourier 

transform also exists for square summable sequence.

For such signals the convergence is not uniform. This has implications in the design of discrete 

system for filtering.  

We also deal with signals that are neither so absolutely summable nor square summable. To deal 

with some of these signals we allow impulse functions, which i

generalized function as a Fourier transform. The impulse function is defined by the following 

properties  

(a)   

(b) 

convolution property)  

(c)  if

Since  is a periodic function,

 

If we substitute this in equation (5.1) we get

                

                                                                                                                         

equality follows from sum of a geometric series, which exists if 

Absolute summability is a sufficient condition for the existence of a Fourier transform. Fourier 

transform also exists for square summable sequence. 

 
convergence is not uniform. This has implications in the design of discrete 

We also deal with signals that are neither so absolutely summable nor square summable. To deal 

with some of these signals we allow impulse functions, which is not an ordinary function but a 

generalized function as a Fourier transform. The impulse function is defined by the following 

 if  is continuous at ;(shifting or 

if  is continuous at   

periodic function,  let us consider 

 

If we substitute this in equation (5.1) we get  

 

 

 

(5.6)

 i.e..  

Absolute summability is a sufficient condition for the existence of a Fourier transform. Fourier 

convergence is not uniform. This has implications in the design of discrete 

We also deal with signals that are neither so absolutely summable nor square summable. To deal 

s not an ordinary function but a 

generalized function as a Fourier transform. The impulse function is defined by the following 

;(shifting or 

(5.7) 

  



 

 

 

Since there is only one impulse in the interval of integration.

Fourier transform of a signal such that

As a generalization of the above example consider a sequence

substituting this in equation (5.1) we get

 

 

as only one term corresponding to 

integration   

So the signal is  when Fourier transform is given by (5.8). More generally if 

an arbitrary set if complex exponentials

Thus its Fourier transform is 

Thus  is a periodic impulse train, with impulses located at 

each of the complex exponentials and at all points that are multiples of

An interval of  contains exactly one impulse from each of the summation in RHS of (5.9)

Example: Let 

Hence 

Since there is only one impulse in the interval of integration.   Thus we can say that (5.7) represents 

that  for all.  

As a generalization of the above example consider a sequence  whose Fourier transform is

 
substituting this in equation (5.1) we get  

 

 will be there in the interval of the 

when Fourier transform is given by (5.8). More generally if   x[n]

an arbitrary set if complex exponentials 

 

is a periodic impulse train, with impulses located at the frequencies 

each of the complex exponentials and at all points that are multiples of  from these frequencies. 

contains exactly one impulse from each of the summation in RHS of (5.9)

 

 

  

Thus we can say that (5.7) represents 

whose Fourier transform is 

 

(5.8) 

 

x[n]  is sum of 

(5.9) 

 of 

from these frequencies. 

contains exactly one impulse from each of the summation in RHS of (5.9)  



  

 

Properties of the Discrete Time Fourier Transform:

In this section we use the following notation. Let

denoted by  and. The notation

is used to say that left hand side is the signal x[n] whose DTFT is

1.   Periodicity of the DTFT 

As noted earlier that the DTFT 

different from the continuous time Fourier transform of a signal.

2.   Linearity of the DTFT: 

If   

and   

then 

This follows easily from the defining equation (5.2).

3. Conjugation of the signal: 

If   

then   

where * denotes the complex conjugate. We have DTFT of

4. Time Reversal 

The DTFT of the time reversal sequence is

 

the Discrete Time Fourier Transform: 

In this section we use the following notation. Let  and  be two signal, then their DTFT is 

and. The notation 

 
is used to say that left hand side is the signal x[n] whose DTFT is  is given at right hand 

 is a periodic function of  with period. This property is 

different from the continuous time Fourier transform of a signal. 

  

follows easily from the defining equation (5.2). 

where * denotes the complex conjugate. We have DTFT of   

 

 

 

 
 

 

 
The DTFT of the time reversal sequence is 

be two signal, then their DTFT is 

is given at right hand side. 

with period. This property is 

 

 

 



Let us change the index of summation as

5. Symmetry properties of the Fourier Transform:

  

If  x[n]  is real valued than 

This follows from property 3. If x[n]

hence 

expressing  in real and imaginary parts we see that

which implies 

and 

That is real part of the Fourier transform is an even function of

function of.

The magnitude spectrum is given by

Hence magnitude spectrum of a real signal is an even function of.

The phase spectrum is given by  

 

 

 

 

change the index of summation as  

 
5. Symmetry properties of the Fourier Transform: 

 

This follows from property 3. If x[n]  is real valued then , so 

 
in real and imaginary parts we see that 

 

 

 
That is real part of the Fourier transform is an even function of  and imaginary part is an odd 

function of.

The magnitude spectrum is given by 

Hence magnitude spectrum of a real signal is an even function of.

 

 

 

 

 and 

and imaginary part is an odd 

function of.  

 
Hence magnitude spectrum of a real signal is an even function of.  

 

 

 

 



 

Thus the phase spectrum is an odd function of. We denote the symmetric and antisymmetric part of 

a function by  

 

Then using property (2) and (3) we see that

and using property (2) and (4) we can see that

6.   Time shifting and frequency shifting:

These can be proved very easily by direct substitution of

and  in equation (5.1).

7.   Differencing and summation: 

This follows directly from

Consider next the signal  defined by

since , we are tempted to conclude that the DTFT of

Thus the phase spectrum is an odd function of. We denote the symmetric and antisymmetric part of 

 

 

 

 

Then using property (2) and (3) we see that 

 

 
property (2) and (4) we can see that 

 

 
Time shifting and frequency shifting: 

 

 

These can be proved very easily by direct substitution of  in equation(5.2) 

in equation (5.1). 

 
This follows directly from linearity property 2.

defined by    

, we are tempted to conclude that the DTFT of  is DTFT of

Thus the phase spectrum is an odd function of. We denote the symmetric and antisymmetric part of 

 

 

 

 

in equation(5.2) 

linearity property 2.  

is DTFT of 



 divided by. This is not entirely true as it ignores the possibility of a dc or average term that can result 

from summation. The precise relationship is

We omit the proof of this property.

If we take  then we get

8. Time and frequency scaling: 

For continuous time signals we know that the Fourier transform of

define a signal  we run into 

integer say , then we get signal. This consists of taking

Thus the DTFT of this signal looks similar to the Fourier transform of a sampled signal. The result th

resembles the continuous time signal is obtained if we define a signal

For example

divided by. This is not entirely true as it ignores the possibility of a dc or average term that can result 

. The precise relationship is 

We omit the proof of this property.

then we get 

 

For continuous time signals we know that the Fourier transform of  is given by. However if we 

we run into difficulty as the index  must be an integer. Thus if

, then we get signal. This consists of taking  sample of the original signal. 

Thus the DTFT of this signal looks similar to the Fourier transform of a sampled signal. The result th

resembles the continuous time signal is obtained if we define a signal  by 

 

For example  is illustrated below  

Fig 5.2 

divided by. This is not entirely true as it ignores the possibility of a dc or average term that can result 

 
We omit the proof of this property.  

is given by. However if we 

must be an integer. Thus if  is an 

sample of the original signal. 

Thus the DTFT of this signal looks similar to the Fourier transform of a sampled signal. The result that 

  



The signal  is obtained by inserting

 

 

 

Here we can note the time frequency uncertainly. Since

Fourier transform is compressed. 

9.  Diffentiation in frequency domain

Differentiating both sides with respect to

multiplying both sides by j we obtain

10.   Passeval's relation: 

We have 

interchanging summation and integration we get

 

is obtained by inserting  zeroes between successive value if signal.

 

 

 

the time frequency uncertainly. Since  is expanded sequence, the 

Diffentiation in frequency domain 

 
Differentiating both sides with respect to , we obtain 

 
multiplying both sides by j we obtain 

 

 

 
interchanging summation and integration we get  

 

 

zeroes between successive value if signal.  

 

 

 

is expanded sequence, the 

 



 

 

11. Convolution property: 

This is the eigenfunction property of the complex exponential mentioned in the beginning of the 

chapter. The fourier syntaxis equation (5.1) for the x[n]

of  in terms of linear combinations of complex exponential with amplitude proportional to. 

Each of these complex exponential is an eigenfunction of the LTI system and so the 

amplitude  in the decomposition of

Fourier transform of the impulse response. We prove this formally. The output

terms of convolution sum, so  

 

interchanging order of the summation

Let  then 

Thus if 

then 

 

 

 

 

 

This is the eigenfunction property of the complex exponential mentioned in the beginning of the 

syntaxis equation (5.1) for the x[n]  can be interpreted as a representation 

in terms of linear combinations of complex exponential with amplitude proportional to. 

Each of these complex exponential is an eigenfunction of the LTI system and so the 

in the decomposition of  will be , where 

Fourier transform of the impulse response. We prove this formally. The output 

 

 

 

interchanging order of the summation  

 

 

 and we get  

 
 

 

 
 

 

 
 

 

  

 

 

This is the eigenfunction property of the complex exponential mentioned in the beginning of the 

can be interpreted as a representation 

in terms of linear combinations of complex exponential with amplitude proportional to. 

Each of these complex exponential is an eigenfunction of the LTI system and so the 

 is the 

 is given is 

 

 

 

 

 

 



 

convolution in time domain becomes multiplication in the frequency domain. The fourier transform 

of the impulse response  is known as frequency response of the system.

12.   The Modulation or windowing property

Let us find the DTFT of product of two sequences

 

 

Substituting for x[n]  in terms of IDFT we get

interchanging order of integration and summation

 

 

This looks like convolution of two

 and  one periodic functions, and equation (5.21) is called periodic convolution. Thus

where  denotes periodic convolution.

We summarize these properties in Table (5.1)

Table 5.1: Properties of Discrete time Fourier Transform

Aperiodic signal 

 

 

convolution in time domain becomes multiplication in the frequency domain. The fourier transform 

is known as frequency response of the system. 

Modulation or windowing property 

Let us find the DTFT of product of two sequences  

 

 

in terms of IDFT we get 

 
interchanging order of integration and summation  

 

 

 

 

This looks like convolution of two functions, only the interval of integration is 

one periodic functions, and equation (5.21) is called periodic convolution. Thus

 

denotes periodic convolution.

We summarize these properties in Table (5.1) 

Discrete time Fourier Transform 

Discrete time fourier transform 

 

(5.20) 

convolution in time domain becomes multiplication in the frequency domain. The fourier transform 

 

 

 

 

 to. 

one periodic functions, and equation (5.21) is called periodic convolution. Thus 

denotes periodic convolution.  



 

 

 

 

 

 

 

 

 

 

 

 

The frequency response of systems characterized by linear constant coefficient difference 

equation.  

As we have seen earlier, constant coefficient linear difference equation with zero initial condition can 

be used to describe some linear time invariant systems.

The input-output  and  

We assume that Fourier transforms of

response of the system) exist, then convolution property implies that

 

 

 

 

 

 

 

 

 

 

 

The frequency response of systems characterized by linear constant coefficient difference 

have seen earlier, constant coefficient linear difference equation with zero initial condition can 

be used to describe some linear time invariant systems. 

 are related by 

 

We assume that Fourier transforms of    and  , (  is the impulse 

response of the system) exist, then convolution property implies that 

 

The frequency response of systems characterized by linear constant coefficient difference 

have seen earlier, constant coefficient linear difference equation with zero initial condition can 

(5.22) 

is the impulse 



Taking fourier transform of both sides of equation (5.22) and using linearity and time shifting 

property of the Fourier transform we get

or 

 

Thus we see that the frequency response is ratio of polynomials in the variable. The numerator 

coefficients are the coefficients of 

coefficients of  in equation (5.22). Thus we can write the frequency resp

inspection.  

Example 2: Consider an LTI system initially at rest described by the difference equation

The frequency response of the system is

We can use the inverse fourier transform to get the impulse response

Discrete Fourier series Representation of a periodic signal

Suppose that  is a periodic signal with period N, that is

As is continues time periodic signal, we would like to represent

complex exponential signals are given by

                                                              

All these signals have frequencies is that are multiples of the some fundamental frequency,

 

Taking fourier transform of both sides of equation (5.22) and using linearity and time shifting 

property of the Fourier transform we get 

 

 

 

see that the frequency response is ratio of polynomials in the variable. The numerator 

 in equation (5.22) and denominator coefficients are the 

in equation (5.22). Thus we can write the frequency resp

Consider an LTI system initially at rest described by the difference equation

 
The frequency response of the system is 

 
We can use the inverse fourier transform to get the impulse response 

 
Representation of a periodic signal 

is a periodic signal with period N, that is 

 

As is continues time periodic signal, we would like to represent  in terms of discrete time 

complex exponential signals are given by 

                                                                                                         

All these signals have frequencies is that are multiples of the some fundamental frequency,

Taking fourier transform of both sides of equation (5.22) and using linearity and time shifting 

(5.23) 

see that the frequency response is ratio of polynomials in the variable. The numerator 

in equation (5.22) and denominator coefficients are the 

in equation (5.22). Thus we can write the frequency response by 

Consider an LTI system initially at rest described by the difference equation 

in terms of discrete time 

                                            (6.1) 

All these signals have frequencies is that are multiples of the some fundamental frequency, , and 



thus harmonically related. 

These are two important distinction between continuous time and discrete time complex exponential. 

The first one is that harmonically related continuous time complex exponential   are all 

distinct for different values of k , while there are only N different signals in the set. 

The reason for this is that discrete time complex exponentials which differ in frequency by integer 

multiple of are identical. Thus 

 

So if two values of k differ by multiple of N , they represent the same signal. Another difference 

between continuous time and discrete time complex exponential is that  for 

different k have period which changes with k. In discrete time exponential, if k and N are 

relative prime than the period is N and not N/k. Thus if N is a prime number, all the complex 

exponentials given by (6.1) will have period N. In a manner analogous to the continuous time, we 

represent the periodic signal  as 

                                                                                                       (6.2) 

where 

                                                                                                          (6.3) 

In equation (6.2) and (6.3) we can sum over any consecutive N values. The equation (6.2) is synthesis 

equation and equation (6.3) is analysis equation. Some people use the faction 1 /N in analysis 

equation. From (6.3) we can see easily that 

 

Thus discrete Fourier series coefficients are also periodic with the same period N. 

Example 1: 

 

 

So,   and , since the signal is periodic with periodic with period 5, coefficients 

are also periodic with period 5, and.  



  

Now we show that substituting equation (6.3) into (6.2) we indeed get. 

 

interchanging the order of summation we get 

                                                                                                            (6.4) 

Now the sum 

  

if n - m multiple of N 

and for ( n - m ) not a multiple of N this is a geometric series, so sum is 

 

As m varies from 0 to N - 1, we have only one value of m namely m = n , for which the inner sum if 

non-zero. So we set the RHS of (6.4) as. 

 

Properties of Discrete-Time Fourier Series 

Here we use the notation similar to last chapter. Let  be periodic with period N and discrete 

Fourier series coefficients be  then the write 

 

where LHS represents the signal and RHS its DFS coefficients 

 1. Periodicity DFS coefficients: 

As we have noted earlier that DFS Coefficients  are periodic with period N.  

2. Linearity of DFS: 

If 

  

 
If both the signals are periodic with same period N then 



 

3. Shift of a sequence: 

                                                                                                     (6.5) 

                                                                                                          (6.6) 

To prove the first equation we use equation (6.3). The DFS coefficients are given by 

 

let n - m = l , we get 

 

since  is periodic we can use any N consecutive values, then 

 

                                                                 

We can prove the relation (6.6) in a similar manner starting from equation (6.3) 

 4. Duality: 

From equation (6.2) and (6.3) we can see that synthesis and analysis equation differ only in sign of the 

exponential and factor 1/N. If  is periodic with period N , then  is also periodic with 

period N. So we can find the discrete fourier series coefficients of   sequence. 

From equation (6.2) we see that 

 

Thus 

 

Interchanging the role of k and n we get 



 

comparing this with (6.3) we see that DFS coefficients of  are  the original 

periodic sequence is reversed in time and multiplied by N. This is known as duality property. If 

                                                                                                                    (6.7) 

then 

                                                                                                               (6.8) 

 5. Complex conjugation of the periodic sequence: 

 

substituting in equation (6.3) we get 

 

 6. Time reversal: 

 

From equation (6.3) we have the DFS coefficient 

 

putting m = - n we get 

 

Since  is periodic, we can use any N consecutive values 

  

 

 
 7. Symmetry properties of DFS coefficient: 

In the last chapter we discussed some symmetry properties of the discrete time Fourier transform of 

aperiodic sequence. The same symmetry properties also hold for DFS coefficients and their derivation 

is also similar in style using linearity, conjugation and time reversal properties DFS coefficients. 

 8. Time scaling: 

Let us define 



 

sequence is obtained by inserting ( m - 1) zeros between two consecutive values of. Thus 

Thus  is also periodic, but period is mN. The DFS coefficients are given by 

 

putting  

 

as non zero terms occur only when r = 0 

                                                                                               

If we define  then  is periodic with period equal to least common multiple (LCM) 

of M and N. The relationship between DFS coefficients is not simple and we omit it here. 

  

  

9. Difference 

 

This follows from linearity property. 

  

10. Accumulation 

Let us define 

 

 will be bounded and periodic only if the sum of terms of  over one period is zero, 

i.e. , which is equivalent to. Assuming this to be true 

 

  



11. Periodic convolution 

Let and be two periodic signals having same period N with discrete Fourier series 

coefficients denoted by and respectively. If we form the 

product then we want to find out the sequence whose DFS 

coefficients are. From the synthesis equation we have 

 

                                                                          

substituting for  in terms of  we get 

 

interchanging order of summations we get 

 

                                                                                                                    (6.15) 

as inner sum can be recognized as  from the synthesis equation. Thus 

 

The sum in the equation (6.15) looks like convolution sum, except that the summation is over one 

period. This is known as periodic convolution. The resulting sequence  is also periodic with 

period N. This can be seen from equation (6.15) by putting m + N instead of m. 

The Duality theorem gives analogous result when we multiply two periodic sequences. 

 

The DFS coefficients are obtained by doing periodic convolution of and and 

multiplying the result by 1/N. We can also prove this result directly by starting from the analysis 

equation. The periodic convolution has properties similar to the aperiodic (linear convolution).It is 

cumulative, associative and distributes over additions of two signals. 

The properties of DFS representation of periodic sequence are summarized in the Table 6.1 

  



  Periodic sequence (period N) DFS coefficients (Period N) 

1. 
 

 period N 

2. 
 

 

3. 
  

4. 
 

 

5. 
 

 

6. 
  

7. 
 

 

8. 

  

(periodic with period mN) 

  

(viewed as periodic with period mN) 

9. 
 

 

10.   

(periodic only if )  

11. 

 

 

12. 
 

 

13. 
 

 

14. 
 

 

15. 

 

 

16. 

 

 

17. If is real then   



  

  

  

 
 

Table 6.1 

  

 

Fourier Transform of periodic signals 

If  is periodic with period N, then we can write 

 

Using equation (5.9) we see that 

 

                                                                

as  is periodic with period N. 

Example:  

Consider the periodic impulse train 

 

then 

      

                                                                               

as only one term corresponding to n = 0 is non zero. Thus the DTFT is 

          

 

Fourier Representation of Finite Duration sequence 

The Discrete Fourier Transform (DFT) 

We now consider the sequence  such that  and. Thus  can be take non-



zero values only for. Such sequences are known as finite length sequences, and N is called the length 

of the sequence. If a sequence has length M, we consider it to be a length N sequence where. In these 

cases last ( N - M ) sample values are zero. To each finite length sequence of length N we can always 

associate a periodic sequence defined by 

                                                                                                         (6.16) 

Note that defined by equation (6.16) will always be a periodic sequence with period N, 

whether is of finite length N or not. But when  has finite length N, we can recover the 

sequence  from  by defining 

                                                                                            (6.17) 

This is because of  has finite length N , then there is no overlap between terms 

 and  for different values of. 

Recall that if  

n = kN + r, where  

then n modulo N = r , 

i.e. we add or subtract multiple of N from n until we get a number lying between 0 to N - 1. We will 

use ((n))N to denote n modulo N. Then for finite length sequences of length N equation (6.16) can be 

written as 

                                                                                                                 (6.18) 

We can extract  from  using equation (6.17). Thus there is one-to- one correspondance 

between finite length sequences  of length N , and periodic sequences  of period N. 

Given a finite length sequence  we can associate a periodic sequence with it.  

This periodic sequence has discrete Fourier series coefficients which are also periodic with 

period N.From equations (6.2) and (6.3) we see that we need values of for 

 and  for 0 = k = N - 1. Thus we define discrete Fourier transform of finite length 

sequence as 

 

where  is DFS coefficient of associated periodic sequence. From  we can get 

 by the relation. 

 

then from this we can get  using synthesis equation (6.2) and finally  using equation 

(6.17). In equations (6.2) and (6.3) summation interval is 0 to N - 1, we can write X [k ] directly in terms 

of x[n], and x[n] directly in terms of X[k] as 



 

        

For convenience of notation, we use the complex quantity 

                                                                                                                                      (6.19) 

with this notation, DFT analysis and synthesis equations are written a follows 

Analysis equation: 

                                                                                                  (6.20) 

Synthesis equation: 

                                                                                           (6.21) 

If we use values of k and n outside the interval 0 to N - 1 in equation (6.20) and (6.21), then we will 

not get values zero, but we will get periodic repetition of  and  respectively. In defining 

DFT, we are concerned with values only in interval 0 to N - 1. Since a sequence of length M can also be 

considered a sequence of length , we also specify the length of the sequence by saying N-

point-DFT, of sequence. 

  

Sampling of the Fourier transform: 

For sequence  of length N, we have two kinds of representations, namely, discrete time 

Fourier transform  and discrete Fourier transform. The DFT values  can be considered 

as samples of  

 

(as x[n] = 0 n < 0, for n < 0, and n > N - 1) 

                                                                                                                                  (6.22) 

Thus is  is obtained by sampling  at. 

 



Properties of the discrete Fourier transform 

Since discrete Fourier transform is similar to the discrete Fourier series representation, the properties 

are similar to DFS representation. We use the notation 

 

to say that  are DFT coefficient of finite length sequence. 

1. Linearity 

If two finite length sequence have length M and N , we can consider both of them with length greater 

than or equal to maximum of M and N. Thus if 

 

 

then 

 

where all the DFTs are N-point DFT. This property follows directly from the equation (6.20) 

2. Circular shift of a sequence 

If we shift a finite length sequence  of length N , we face some difficulties. When we shift it in 

right direction  the length of the sequence will becam  according to 

definition. Similarly if we shift it left , if may no longer be a finite length sequence 

as  may not be zero for n < 0. Since DFT coefficients are same as DFS coefficients, we define 

a shift operation which looks like a shift of periodic sequence. From  we get the periodic 

sequence  defined by 

 

We can shift this sequence by m to get 

 

Now we retain the first N values of this sequence 

 

This operation is shown in figure below for m = 2, N = 5. 



 

Fig 6.1 

  

We can see that  is not a shift of sequence. Using the propertiesof the modulo arithmetic we 

have 

 

and 

                                                                                             (6.23) 

The shift defined in equation (6.23) is known as circular shift. This is similar to a shift of sequence in a 

circular register. 



 
Fig 6.2 

  

3. Shift property of DFT 

From the definition of the circular shift, it is clear that it corresponds to linear shift of the associated 

periodic sequence and so the shift property of the DFS coefficient will hold for the circular shift. Hence 

                                                                               (6.24) 

and 

                                                                                (6.25) 

4. Duality 

We have the duality for the DFS coefficient given by , retaining one period of 

the sequences the duality property for the DFT coefficient will become 

 

5. Symmetry properties 

We can infer all the symmetry properties of the DFT from the symmetry properties of the associated 

periodic sequence  and retaining the first period. Thus we have 

 

and 

 

We define conjugate symmetric and anti-symmetric points in the first period 0 to N - 1 by 

 

 

Since 

 

the above equation similar to 

                                                                                     

(6.26) 



                                                                                     

(6.27) 

 

 and  are referred to as periodic conjugate symmetric and periodic conjugate anti-

symmetric parts of. In terms if these sequence the symmetric properties are 

 

 

 

 
6. Circular convolution 

We saw that multiplication of DFS coefficients corresponds of periodic convolution of the sequence. 

Since DFT coefficients are DFS coefficients in the interval, , they will correspond to DFT of 

the sequence retained by periodically convolving associated periodic sequences and retaining their first 

period. 

 

 
Periodic convolution is given by 

 
using properties of the modulo arithmetic 

 

and then 

 

Since  we get 

 

The convolution defined by equation (6.28) is known as N-point-circular convolution of 

sequence  and , where both the sequence are considered sequence of length N. From 

the periodic convolution property of DFS it is clear that DFT of  is. If we use the 



notation  to denote the N point circular convolution we see that 

                                                                                                 (6.29) 

In view of the duality property of the DFT we have 

                                                                                                 (6.30) 

  

Properties of the Discrete Fourier transform are summarized in the table 6.2 

 
Finite length sequence (length N) N-point DFT (length N) 

1. 
  

2. 
  

3. 
 

 

4. 
 

 

5. 
 

 

6. 
  

7. 
 

 

8. 
 

 

9. 
 

 

10. 
 

 

11. 
 

 

12. 
 

 

13. 
 

 

14. If  is real sequence 

 

 

 

 

 
 

  

 

Linear convolution using the Discrete Fourier Transform 



Output of a linear time invariant-system is obtained by linear convolution of input signal with the 

impulse response of the system. If we multiply DFT coefficients, and then take inverse transform we 

will get circular convolution. From the examples it is clear that result of circular convolution is 

different from the result of linear convolution of two sequences. But if we modify the two sequence 

appropriately we can get the result of circular convolution to be same as linear convolution. Our 

interest in doing linear convolution results form the fact that fast algorithms for computing DFT and 

IDFT are available. These algorithms will be discussed in a later chapter. Here we show how we can 

make result of circular convolution same as that of linear convolution. 

If we have sequence of length L and a sequence of length M , the sequence 

obtained by linear convolution has length ( L + M - 1). 

This can be seen from the definition 

 

                                                                                                                  (6.31) 

as x[k] = 0 for. For  hence. Similarly 

for , so. Hence   is possibly nonzero only for.  

Now consider a sequence , DTFT is given by 

 

writing 

 

We get 

 

If we take 

 

we see that 

 

Comparing this with the DFT equation (6.), we see that 

 

can be seen as DFT coefficients of a sequence 

                                                                                            (6.32) 

obviously if  has length less then or equal to N , then 



However, if the length of 

of l.  

The sequence  in equation (6.31) has the discrete Fourier transform

The N-point DFT of  sequence is

                                                                                 

                                                                                 

where  and  are N

resulting as the inverse DFT of 

From the circular convolution property of the DFT we have

Thus, the circular convolution of two

followed time aliasing, defined by equation (6.32). If N is greater than or equal to (

there will be no time aliasing as the linear convolu

we can use circular convolution for linear convolution by padding sufficient number of zeros at the 

end of a finite length sequence. We can use DFT algorithm for calculating the circular convolution.

  

 

Definition of the Z-transform 

We saw earlier that complex exponential of the from

We can generalize this for signals of the form

= 

 = 

 

 is greater than  may not be equal to 

in equation (6.31) has the discrete Fourier transform 

 

sequence is 

 

                                                                                   

                                                                                  

are N-point DFTs of  and  respectively. The sequence 

 is then by equation (6.32). 

 

From the circular convolution property of the DFT we have 

 

Thus, the circular convolution of two-finite length sequences can be viewed as linear convolution, 

followed time aliasing, defined by equation (6.32). If N is greater than or equal to ( L + 

there will be no time aliasing as the linear convolution produces a sequence of length (

we can use circular convolution for linear convolution by padding sufficient number of zeros at the 

end of a finite length sequence. We can use DFT algorithm for calculating the circular convolution.

We saw earlier that complex exponential of the from  is an eigen function of for a LTI System. 

We can generalize this for signals of the form  where,  is a complex number. 

 

 

 for all values 

respectively. The sequence 

finite length sequences can be viewed as linear convolution, 

M - l ), then 

tion produces a sequence of length ( L + M - l ). Thus 

we can use circular convolution for linear convolution by padding sufficient number of zeros at the 

end of a finite length sequence. We can use DFT algorithm for calculating the circular convolution. 

is an eigen function of for a LTI System. 

 

 



 = 

 = 
 

 

where 

Thus if the input signal is  then output signal is. For

(7.1) is same as the discrete-time fourier transform. The

bilateral z-transform of the sequence. We define for any 

where  is a complex variable. Writing

and  is angle of. 

= 

 = 

 

This shows that  is Fourier transform of the sequence. When

reduces to the Fourier transform of. From equation (7.3) we see that for convergence of z

that Fourier transform of the sequence

others. The values of z - for which

the ROC contains unit circle (i.e.

converges. Following examples show that we must specify ROC to completely specify the z

  

Example 1: Let 

= 

 = 

 

This is a geometric series and converges if

 

 

 

then output signal is. For   real (i.e for 

time fourier transform. The  in equation (7.1) is known as the 

transform of the sequence. We define for any sequence of a sequence 

 

 

is a complex variable. Writing  in polar form we get , where 

 

 

is Fourier transform of the sequence. When  the z

to the Fourier transform of. From equation (7.3) we see that for convergence of z

that Fourier transform of the sequence  converges. This will happen for some r and not for 

 is called the region of convergenc

the ROC contains unit circle (i.e.  or equivalently  then the Fourier transform also 

converges. Following examples show that we must specify ROC to completely specify the z

, then 

 

 

geometric series and converges if  or. Then 

 

 

(7.1)

), equation 

in equation (7.1) is known as the 

 as 

(7.2)

  is magnitude 

 

(7.3)

the z-transform 

to the Fourier transform of. From equation (7.3) we see that for convergence of z-transform 

converges. This will happen for some r and not for 

is called the region of convergence(ROC). If 

then the Fourier transform also 

converges. Following examples show that we must specify ROC to completely specify the z-transform. 

 

 



 

We see that  at , and

zero of and value of  where

of a region in Z-plane which lies outside the circle centered at origin and passing through the pole.

Example 2: Let, 

= 

 = 

 

This is a geometric series which converges when

 

 

, and  at. Values of  where  is zero is called 

where  is zero is called a pole of. Here we see that ROC consists 

outside the circle centered at origin and passing through the pole.

 

Fig 7.1 

, then 

 

 

This is a geometric series which converges when , that is  Then 

 

 

(7.4)

is zero is called 

is zero is called a pole of. Here we see that ROC consists 

outside the circle centered at origin and passing through the pole.  

 

 

 

(7.5)



Here the ROC is inside the circle of

form of  and  are same, but ROC are different and they correspond to two different 

sequences. Thus in specifying z-transform, we have to give functional form

convergence.  

Now we state some properties of the region of convergence

 

Properties of the ROC 

1. The ROC of  consists of an annular region in the z

property follows from equation (7.3), where we see that convergence 

2. The ROC does not certain any poles. Since at poles

3. The ROC is a connected region in z

4. If  is a right sided sequence, i.e.

the ROC, then all finite values of

For a right sided sequence 

If  is negative then we can write

                                                              

Let , with

 
Fig 7.2 

  

Here the ROC is inside the circle of radius. Comparing equation (7.4) and (7.5) we see that algebraic 

are same, but ROC are different and they correspond to two different 

transform, we have to give functional form  and the region of 

Now we state some properties of the region of convergence 

consists of an annular region in the z-plane, centered about the origin. This 

property follows from equation (7.3), where we see that convergence depends on

The ROC does not certain any poles. Since at poles  does not converge. 

The ROC is a connected region in z-plane. This property is proved in complex analysis.

is a right sided sequence, i.e. , for  , and if the circle

ROC, then all finite values of , for which   will also be in the ROC.

 

 

is negative then we can write  

                                                               

, with , then,  exists if

radius. Comparing equation (7.4) and (7.5) we see that algebraic 

are same, but ROC are different and they correspond to two different 

and the region of 

plane, centered about the origin. This 

depends on  only. 

plane. This property is proved in complex analysis. 

, and if the circle  is in 

will also be in the ROC.  

exists if  



The first summation is finite as it consists of a finite number of terms. In the second 

summation note that each term is less than

assumption that circle with radius

of z such that  lies in ROC, except when. At

infinite. So if , i.e. the sequence

5. If  is left sided sequence, i.e.

values of function

The proof is similar to the property 4. The point

purely 

anticausal 

6. If  is non zero for, 

and/or. In this case the 

each term infinite which is the case when

if , and  lies in the ROC if.

7. If  is two-sided sequence and if circle

annular region in z-plane, which includes. We can express a two sided sequence as sum of a 

right sided sequence and a left sided sequence. Then using property 4 and 5 we get this 

property. Using

property 2 and 3 we see what ROC will be banded by circles passing

 

 

The inverse z-transform 

The inverse z-transform is given by 

 

the symbol  indicates contour integration, over a counter clockwise contour in the ROC of. If

ratio of polynomials one can use Cauchy integral 

alternative procedures also, which will be considered after discussing the properties of z
 

 

Properties of the z-transform 

We use the notation 

to denote z-transform of the sequence.

  

1. Linearity 

 is finite.

first summation is finite as it consists of a finite number of terms. In the second 

summation note that each term is less than  as. Since 

assumption that circle with radius  lies in ROC, the second sum is also finite. Hence values 

lies in ROC, except when. At , the first summation will became 

, i.e. the sequence  is causal, the value  will lie in the ROC.

is left sided sequence, i.e.  and  lies in the ROC, the 

function  also lie in the ROC.

The proof is similar to the property 4. The point , will lie in the ROC if the sequence is 

 

, then ROC is entire z-plane except possibly

 consists of finite number of terms and therefore it converges if 

each term infinite which is the case when  is different from 0 or. 

lies in the ROC if. 

sided sequence and if circle  is in ROC, then ROC will consist of 

plane, which includes. We can express a two sided sequence as sum of a 

right sided sequence and a left sided sequence. Then using property 4 and 5 we get this 

property. Using

property 2 and 3 we see what ROC will be banded by circles passing through the poles.

 

 

indicates contour integration, over a counter clockwise contour in the ROC of. If

ratio of polynomials one can use Cauchy integral theorem to calculate the contour integral. There are some other 

alternative procedures also, which will be considered after discussing the properties of z

 

transform of the sequence. 

is finite.  

first summation is finite as it consists of a finite number of terms. In the second 

 is finite by our 

lies in ROC, the second sum is also finite. Hence values 

, the first summation will became 

will lie in the ROC. 

lies in the ROC, the 

the ROC.  

, will lie in the ROC if the sequence is 

plane except possibly , 

of finite number of terms and therefore it converges if 

 lies in ROC, 

is in ROC, then ROC will consist of 

plane, which includes. We can express a two sided sequence as sum of a 

right sided sequence and a left sided sequence. Then using property 4 and 5 we get this 

property. Using 

through the poles. 

indicates contour integration, over a counter clockwise contour in the ROC of. If 

theorem to calculate the contour integral. There are some other 

alternative procedures also, which will be considered after discussing the properties of z-transform. 



The z-transform of a linear combination of two sequence is given by

The algebraic form follows directly from the definition, equation (7.2). The linear combination is 

such that some zero's can cancel the poles, then the region of convergence may be larger. For 

example if the linear combination 

entire z-plane except at , like individual ROCs are. If the intersection of

set, the z-transform of the linear combination will not exist.

  

2. Time shifting 

If we shift the time sequence, we get

, 

 and/or   

We have 

changing variable,  

= 

 = 

 = 
 

 

The factor  can affect the poles and zeros at

  

3.  Multiplication by a exponential sequence

This follows directly from defining equation (7.2).

  

4.   Differentiation of : 

If we differentiate  term by term we get

transform of a linear combination of two sequence is given by 

 ROC contains  

The algebraic form follows directly from the definition, equation (7.2). The linear combination is 

's can cancel the poles, then the region of convergence may be larger. For 

 is a finite-length sequence, the ROC is 

, like individual ROCs are. If the intersection of  and

ransform of the linear combination will not exist. 

If we shift the time sequence, we get

 except for possible addition or deletion of

 

 

 

 

the poles and zeros at ,  

Multiplication by a exponential sequence 

 

This follows directly from defining equation (7.2). 

term by term we get 

 

The algebraic form follows directly from the definition, equation (7.2). The linear combination is 

's can cancel the poles, then the region of convergence may be larger. For 

length sequence, the ROC is 

and  is null 

If we shift the time sequence, we get  

except for possible addition or deletion of 

 

 

 



Thus 

The ROC does not change (except 

analytic function. 

  

5. Conjugation of a complex sequence

=

 =

 =

Since ROC depends only an magnitude

  

6.  Time Reversal 

We have                                                      

putting   

 

 

, except possibly 

, ). This follows from the property that

5. Conjugation of a complex sequence 

  

= 

 

= 

 

= 
 

Since ROC depends only an magnitude  it does not change. 

 

 

                                                    

  

). This follows from the property that  is an 

 

 

 



= 

 = 
 

 

If we combine it with the previous property, we get

7.  Convolution of sequence 

The z-transform of the convolution is

Interchanging the order of summation

using time shifting property (or changing index of summation)

 = 

 
= 

 

If there is pole-zero cancelation, the ROC will be larger than the common ROC of two sequence.

Convolution property plays an important role in analysis 

produces a delay of , has the transfer function

depicted by  

 

If we combine it with the previous property, we get 

 

  

   ROC contains  

transform of the convolution is        

of summation      

using time shifting property (or changing index of summation)  

 

 

zero cancelation, the ROC will be larger than the common ROC of two sequence.

Convolution property plays an important role in analysis of LTI system. An LTI system, which 

, has the transfer function , therefore delay of  

 

 

 

 

 

 

zero cancelation, the ROC will be larger than the common ROC of two sequence.  

of LTI system. An LTI system, which 

 units is often 



  

8.  Complex convolution theorem 

If we multiply two sequences then 

This can be proved using inverse z-transform definition.

  

9.  Initial value Theorem 

If  is zero for , i.e. 

Taking limit term by term in , we get the above result.

10.  Parseval's relation 

 

These properties are summarized in table 7.1

Table 

Methods of inverse z-transform 

We can use the contour integration and the equation (7.6) to calculate inverse z

equation has to be evaluated for all values of

Here we give two simple methods for the inverse transform computation.

  

1. Inverse transform by partial fraction expansion

This is method is useful when z-transform is ratio of polynomials. A rational

Fig 7.3 

 

 

ROC contains

transform definition. 

 is causal, then 

 

, we get the above result. 

 

These properties are summarized in table 7.1  

Table 7.1     z-transform properties 

We can use the contour integration and the equation (7.6) to calculate inverse z-transform. This 

equation has to be evaluated for all values of , which can be quite complicated in many cases.

Here we give two simple methods for the inverse transform computation. 

1. Inverse transform by partial fraction expansion 

transform is ratio of polynomials. A rational  can be expressed 

 

transform. This 

, which can be quite complicated in many cases. 

can be expressed 



as 

 

where  and  are polynomials in. If degree

greater than or equal to the degree N of the denominator polynomial

 by  and re-express  as 

where the degree of polynomial 

all poles are simple. Then                        

where 

 

Example: Let 

The partial fraction expression is 

The inverse z-transform depends on the ROC. If ROC is

term is outside a circle(so that common ROC is outside a circle), sequences are causal. Using linearity 

polynomials in. If degree  of the numerator polynomial

greater than or equal to the degree N of the denominator polynomial , we can divide

 

 

 is strictly less than that of. For simplicity let us assume that 

                         

  

 

= 

 

= 

= 

= 

 

transform depends on the ROC. If ROC is , then ROCs associated with each 

term is outside a circle(so that common ROC is outside a circle), sequences are causal. Using linearity 

of the numerator polynomial  is 

, we can divide 

t us assume that 

 

 

 

 

 

, then ROCs associated with each 

term is outside a circle(so that common ROC is outside a circle), sequences are causal. Using linearity 



property and z-transform of 

If the ROC is , the ROC of the term

and ROC for  should be. Hence we get 

        

Similarly if ROC is  we get a noncausal sequence

                    

If  has multiple poles, the partial fraction has slightly different form. If

order s at , and all other poles are simple Then

where  and  are obtained as before, the coefficients

If there are more multiple poles, there will be more terms like the third term.

Using linearity and differentiation properties we get some useful z

Sequence 

1.  
 

2.  

3.  

 we get 

 

, the ROC of the term       should be outside the circle

should be. Hence we get the sequence as 

 

we get a noncausal sequence 

 

has multiple poles, the partial fraction has slightly different form. If 

, and all other poles are simple Then 

are obtained as before, the coefficients  are given by 

If there are more multiple poles, there will be more terms like the third term.

Using linearity and differentiation properties we get some useful z-transform pairs given in Table 7.2

Transform ROC 

All  

 All , except 0(if ) or 

 

 

should be outside the circle , 

 

 has a pole of 

 

 

If there are more multiple poles, there will be more terms like the third term.  

transform pairs given in Table 7.2  

if  



4.  

5.  

6.  

7.  

8.  

9.  
 

Table 7.2

  

2.  Inverse Transform via long division

For causal sequence the z-transform

expansion, the coefficient multiplying the term

terms of poles of.  

Example 1: Let  

This is a causal sequence, long division gives

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.2  Some useful z-transform pairs 

Inverse Transform via long division 

transform  can be exported into a pure series in. In the series 

expansion, the coefficient multiplying the term  is. If  is anticausal then we expand in 

 

This is a causal sequence, long division gives

  

can be exported into a pure series in. In the series 

is anticausal then we expand in 

This is a causal sequence, long division gives  



This gi

We can see that it is not easy to write the

 

Example 2:  

Using the pure series expansion for

= 

= 

 

Analysis of LTI system using z-transform

From the convolution property we have

where are  are 

 and impulse response  respectively. The

function of the system. For  on the unit circle

response of the system, provided th

A causal LTI system has impulse response

in z-plane including. Thus a discrete time LTI system is causal if and only if ROC is exterior of a circle 

which includes infinit

An LTI system is stable if and only if impulse response

equivalent to saying that unit circle is in the ROC of.

For a causal and stable system ROC is outside a circle and ROC contains the unit circle. That means all 

the poles are inside the unit circle. Thus a causal LTI system is stable if and if only if all the poles 

inside unit circle. 

  

LTI systems characterized by Linear constant coefficient difference equation

For the system characterized by 

We take the z-transform of both sides and use linearity and the time shift property to get

This gives 

We can see that it is not easy to write the

 

Using the pure series expansion for  with , we obtain  

 

 

 

transform 

From the convolution property we have 

 

 z-transforms of input sequence , output sequence

respectively. The  is referred to as system function or transfer 

on the unit circle ,  reduces to the frequency 

response of the system, provided that unit circle is in the ROC for.

A causal LTI system has impulse response  such that. Thus ROC of  is exterior of a circle 

plane including. Thus a discrete time LTI system is causal if and only if ROC is exterior of a circle 

which includes infinit

An LTI system is stable if and only if impulse response  is absolutely summable. This is 

equivalent to saying that unit circle is in the ROC of.

For a causal and stable system ROC is outside a circle and ROC contains the unit circle. That means all 

he poles are inside the unit circle. Thus a causal LTI system is stable if and if only if all the poles 

LTI systems characterized by Linear constant coefficient difference equation 

 
transform of both sides and use linearity and the time shift property to get

,.....  

We can see that it is not easy to write the  term.  

 

 

, output sequence 

is referred to as system function or transfer 

reduces to the frequency 

at unit circle is in the ROC for.  

is exterior of a circle 

plane including. Thus a discrete time LTI system is causal if and only if ROC is exterior of a circle 

which includes infinity.  

is absolutely summable. This is 

equivalent to saying that unit circle is in the ROC of.  

For a causal and stable system ROC is outside a circle and ROC contains the unit circle. That means all 

he poles are inside the unit circle. Thus a causal LTI system is stable if and if only if all the poles 

transform of both sides and use linearity and the time shift property to get  



 

Thus the system function is always a rational function. We can write it by inspection. Numerator 

polynomial coefficients are the coefficients of

of. The difference equation by itself does not provide information about the ROC, it can be determined 

by conditions like causality and stability.

 

System Function and block diagram representation

The use of z-transform allows us to replace time domain operation such as convolution time shifting 

etc with algebraic operations.

Consider the parallel interconnection if two system, as shown in figure 7.4.

 

The impulse response of the over all

From linearity of the z-transform, 

Similarly, the impulse response of the series connection in figure 7.5 is

= 

 

= 

 

Thus the system function is always a rational function. We can write it by inspection. Numerator 

polynomial coefficients are the coefficients of  and denominator coefficients are coefficients 

of. The difference equation by itself does not provide information about the ROC, it can be determined 

by conditions like causality and stability. 

System Function and block diagram representation 

transform allows us to replace time domain operation such as convolution time shifting 

etc with algebraic operations.

Consider the parallel interconnection if two system, as shown in figure 7.4. 

 

Fig  7.4 

The impulse response of the over all system is 

 

 
Similarly, the impulse response of the series connection in figure 7.5 is 

 

 

 

Thus the system function is always a rational function. We can write it by inspection. Numerator 

and denominator coefficients are coefficients 

of. The difference equation by itself does not provide information about the ROC, it can be determined 

transform allows us to replace time domain operation such as convolution time shifting 

etc with algebraic operations.  

 



 

 

From the convolution property. 

The z-transform of the interconnection of linear system can be obtained by algebraic 

example consider the feed back connection in figure 7.6

 

We have  

or

 

Even though this course is primarily about the discrete time signal processing, most signals we 

encounter in daily life are continuous in time such as speech, music and images. Increasingly discrete

time signals processing algorithms are being used to process such signals. For processing by digital 

systems, the discrete time signals are represented in digital form with

binary word. Therefore we need the analog to digital and digital to analog interface circuits to convert 

the continuous time signals into discrete time digital form and vice versa. As a result it is necessary to 

develop the relations between continuous time and discrete time representations.

 
Fig 7.5 

 

transform of the interconnection of linear system can be obtained by algebraic 

example consider the feed back connection in figure 7.6 

 

Fig 7.6 
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 = 
 

= 
 

= 

 

 

Even though this course is primarily about the discrete time signal processing, most signals we 

life are continuous in time such as speech, music and images. Increasingly discrete

time signals processing algorithms are being used to process such signals. For processing by digital 

systems, the discrete time signals are represented in digital form with each discrete time sample as 

binary word. Therefore we need the analog to digital and digital to analog interface circuits to convert 

the continuous time signals into discrete time digital form and vice versa. As a result it is necessary to 

lations between continuous time and discrete time representations. 

 

transform of the interconnection of linear system can be obtained by algebraic means. For 

  

 

 

 

 

 

Even though this course is primarily about the discrete time signal processing, most signals we 

life are continuous in time such as speech, music and images. Increasingly discrete-

time signals processing algorithms are being used to process such signals. For processing by digital 

each discrete time sample as 

binary word. Therefore we need the analog to digital and digital to analog interface circuits to convert 

the continuous time signals into discrete time digital form and vice versa. As a result it is necessary to 



  

Sampling of continuous time signals 

Let  be a continuous time signal that is sampled uniformly at t = nT generating the 

sequence where 

 

T is called sampling period, the reciprocal of T is called the sampling frequency. The frequency domain 

representation of  is given by its Fourier transform 

 

where the frequency-domain representation of  is given by its discrete time fourier transform 

 

To establish relationship between the two representation, we use impulse train sampling. This should 

be understood as mathematically convenient method for understanding sampling. Actual circuits can 

not produce continuous time impulses. A periodic impulse train is given by 

                                                                                                                          (8.1) 

 
Fig 8.1 

  

                                                                                                                             (8.2) 

using sampling property of the impulse , we get 

                                                                                                           (8.3) 

 



  

  

Fig 8.2 

  

From multiplication property, we know that 

 

The Fourier transform of a impulse train is given by 

 

where  

Using the property that  it follows that 

                                                                                                    (8.4) 

Thus  is a periodic function of  with period , consisting of superposition of shifted 

replicas of scaled by. Figure 8.3 illustrates this for two cases. 

 



  

 

  

Fig 8.3  

If or equivalently  there is no overlap between shifted replicas 

of , where as with , there is overlap. Thus if  is faithfully 

replicated in and can be recovered from  by means of lowpass filtering with gain T 

and cut off frequency between and. This result is known as Nyquist sampling theorem. 

  

Sampling Theorem 

Let  be a bandlimited signal with , for. Then  is uniquely determined by its 

samples , if 

 

The frequency  is called Nyquist rate, while the frequency  is called the Nyquist frequency. 

The signal  can be reconstructed by passing  through a lowpass filter. 

  

 
Fig 8.4  

 

The impulse response of this filter is 



 

         

                                            

                                                                                                                            (8.5) 

Assuming  we get 

                                                                                                    (8.6) 

The above expression (8.5) shows that reconstructed continuous time signal  is obtained by 

shifting in time the impulse response of low pass filter  by an amount nT and scaling it in 

amplitude by a factor  for all integer values n. The interpolation using the impulse 

response of an ideal low pass filter in (8.6) is referred to as bandlimited interpolation, since it 

implements reconstruction if  is bandlimited and sampling frequency satisfies the condition of 

the sampling theorem. The reconstruction is in the mean square sense i.e. 

 

The effect of underselling: Aliasing 

We have seen earlier that spectrum  is not faithfully copied when. The terms in (8.4) 

overlap. The signal  is no longer recoverable from. This effect, in which individual terms in 

equation (8.4) overlap is called aliasing. 

For the ideal low pass signal 

 

Hence  

Thus at the sampling instants the signal values of the original and reconstructed signal are same for 

any sampling frequency. 

 

 

DTFT of the discrete time signal 

Taking continuous time Fourier transform of equation (8.3) we get 

                                                                                                              (8.7) 

Since , we get the DTFT 



                                                                                                                     (8.8) 

comparing them we see that 

 

using equation (8.4) we get 

 

or 

                                                                                                 (8.9) 

Comparing equation (8.4) and(8.9) we see that  is simply a frequency scaled version 

of  with frequency scaling specified by. This can be thought of as a normalization of 

frequency axis so that frequency  in  is normalized to  in. For the example 

in figure 8.3 the  is shown in figure (8.5)  

From equation (8.5) we see that 

 

  

 
Fig 8.5 

  

                                                                                                                                (8.10) 

We refer to the system that implements  as ideal continuous-to-discrete time (C/D) 

convertor and is depicted in figure (8.6) 

 
Fig 8.6 

  



The ideal system that takes  sequence as input and produces  given equation (8.5) is 

called ideal discrete to continuous time  convertor and is depicted in Figure (8.7) 

  

 
Fig 8.7 

 

Discrete time processing of continuous time signal 

Figure (8.8) shows a system for discrete time processing of continuous time system 

 
Fig 8.8  

  

The over all system has  as input and  as output. We have the following relations among 

the signals. 

 

 

   

and 

 

                         

If the discrete time system is LTI then we have 

 

combining these equations we get 

                    

                                                           



                                                                                        

(8.11) 

If , for  and we use ideal lowpass reconstruction filter then only the term 

for k = 0 is passed by the filter and we get 

 

Thus if  is bandlimited and sampling rate is above the Nyquist rate, the output is related to 

the input by 

 

where 

                                                                                             

(8.12) 

That is overall system is equivalent to a linear time invariant system for bandlimited signal. 

The LTI property of the system depends on two factors. First the discrete time system is LTI and 

second the input signals are bandlimited to half the sampling frequency 

  

Example 

Let us consider the system in figure 8.8 with 

 

The frequency response is periodic with period. For a bandlimited input signal, sampled above the 

Nyquist rate, the overall system will behave like a LTI continuous time system with 

                

Thus the equivalent system is ideal lowpass system with cut off frequency. With a fixed discrete time 

filter by changing T we can change the cut off frequency of the equivalent system. Spectra for various 

signals are depicted in figure 8.9. 



FIGURE 8.9 

  

From figure (8.9) we can see that ever if there is same aliasing due to sampling, if the components are 

filtered out by the discrete time system, the over all transfer function will remain same. Thus the 

requirement is 

 instead of  for no aliasing. 

  



Continuous time processing of discrete time signals 

Consider the system shown in figure (8.10) 

 
Figure 8.10 

We have 

 

 

 

             

Therefore the overall system behaves as a discrete time system where frequency response is 

                                                                                                       (8.13)             

Example 

Let us consider a discrete time system with frequency response 

 

when  is an integer, this system is delay by  

 

but when  is not an integer, we can not write the above equation. Suppose that we implement this 

using system in figure (8.10). Then we have 

                                                                                          (8.14) 

So that overall system has frequency response. The equation (8.13) represents a time delay  secs 

in continuous time whether  is integer or not, thus 

 

The signal  is bandlimited interpolation of  and  is obtained by sampling. Thus y[n] 

are samples of band limited signal  delayed by. 

 

         



         

For  are depicted in figure (8.11) 

 
Fig 8.11 

Sampling of discrete time Signals 

In analogy with continuous time sampling, the sampling of a discrete time signal can be represented 

as shown in figure 8.12 

 
FIGURE 8.12  

                                          

                                                                                            

(8.15) 

                                      

                                                

In frequency domain, we get 

         

The Fourier transform of  sequence is 



 

where 

 

Thus we get 

                                                                                                (8.16) 

Figure 8.13 illustrates signals and their spectra 

 
FIGURE 8.13 

  



If  or equivalently  or  there will be no aliasing (i.e non zero 

portions of  do not overlap) and the signal  can be recovered from  by passing 

through an ideal low-pass filter with gain equal to N and cut off equal to  

 

 
FIGURE 8.14 

If , there will be aliasing, and so  will be different from. However as in continuous 

time case 

 

independently of whether there is aliasing or not. 

 

                                                                             

                                                                             

For ideal low pass filter 

 

with  we get 

 

 

Discrete time decimation and interpolation 

The sampled signal in equation (8.13) has ( N - 1) samples out of every N samples as zeros. We define 

a new sequence which retains only the non zero values 

 

    

                                                                                                                                              (8.17) 

this is called a decimated sequence, whatever may be the value of. The DTFT of the decimated 

request is given by 



         

                              

since only for multiples of  has non zero value, 

                              

              

                                

                                                                                                                        (8.18) 

For the signal shown in figure (8.13) the sequence and its spectrum are illustrated in figure 

(8.15) 

 
Fig 8.15  

If the original signal  was obtained by sampling a continuous time signal, the process of 

decimation can be viewed as reduction in the sampling rate by a factor of N. With this interpretation, 

the process of decimationis often referred as down sampling. The block diagram for this is shown in 

figure (8.16) 

 
Fig 8.16  



There are situations in which it is useful to convert a sequence to a higher equivalent sampling rate. 

This process is referred to as upsampling or interpolation. This process is reverse of the 

downsampling. Given a sequence  we obtain an expanded sequence  by inserting (L -

 1) zero.  

                                                                                                        (8.19) 

The interpolated sequence  is obtained by low pass filtering of  

 

                                                                                

 

After low pass filtering 

                                                                                                                 (8.20) 

For ideal low-pass filter with cutoff  and gain L we get 

                                                                                             (8.21) 

Signals and their spectra interpolation are shown in figure (8.17) 



 
Fig 8.17  

We can get a non integer change in rate if it is ratio of two integers by using upsampling and 

downsampling operations. 

In many applications of signal processing we want to change the relative amplitudes and frequency 

contents of a signal. This process is generally referred to as filtering. Since the Fourier transform of 

the output is product of input Fourier transform and frequency response of the system, we have to 

use appropriate frequency response. 



  

Ideal frequency selective filters 

An ideal frequency reflective filter passes complex exponential signal. for a given set of frequencies 

and completely rejects the others. Figure (9.1) shows frequency response for ideal low pass filter 

(LPF), ideal high pass filter (HPF), ideal bandpass filter (BPF) and ideal backstop filter (BSF). 

 
Fig 9.1 

The ideal filters have a frequency response that is real and non-negative, in other words, has a zero 

phase characteristics. A linear phase characteristics introduces a time shift and this causes no 

distortion in the shape of the signal in the passband. 

Since the Fourier transfer of a stable impulse response is continuous function of , can not get a 

stable ideal filter. 

 

 

Filter specification 

Since the frequency response of the realizable filter should be a continuous function, the magnitude response of a 



lowpass filter is specified with some acceptable tolerance. Moreover, a transition band is specified between the 

passband and stop band to permit the magnitude to drop off smoothly. Figure (9.2) illustrates this 

  

 
Fig 9.2  

In the passband magnitude the frequency response is within  of unity 

 

In the stopband 

 

The frequencies  and  are respectively, called the passband edge frequency and the stopband edge 

frequency. The limits on tolerances  and  are called the peak ripple value. Often the specifications of digital 

filter are given in terms of the loss function , in dB. The loss specification of digital filter 

are 

         

 

Some times the maximum value in the passband is assumed to be unity and the maximum passband deviation, 

denoted as is given the minimum value of the magnitude in passband. The maximum stopband magnitude 

is denoted by. The quantity   is given by 

       



These are illustrated in Fig(9.3) 

 
Fig 9.3  

If the phase response is not specified, one prefers to use IIR digital filter. In case of an IIR filter design, the most 

common practice is to convert the digital filter specifications to analog low pass prototype filter specifications, to 

determine the analog low pass transfer function  meeting these specifications, and then to transform it into 

desired digital filter transfer function. This methods is used for the following reasons: 

1. Analog filter approximation techniques are highly advanced. 

2. They usually yield closed form solutions. 

3. Extensive tables are available for analog-design. 

4. Many applications require the digital solutions of analog filters. 

The transformations generally have two properties (1) the imaginary axis of the s-plane maps into unit circle of the 

z-plane and (2) a stable continuous time filter is transformed to a stable discrete time filter. 
 

 

Filter design by impulse invariance 

In the impulse variance design procedure the impulse response of the impulse response  of 

the discrete time system is proportional to equally spaced samples of the continues time filter, i.e., 

 

where Td represents a sampling interval, since the specifications of the filter are given in discrete time 

domain, it turns out that Td has no role to play in design of the filter. From the sampling theorem we 

know that the frequency response of the discrete time filter is given by 

 

Since any practical continuous time filter is not strictly bandlimited there issome aliasing. However, if 

the continuous time filter approaches zero at high frequencies, the aliasing may be negligible. Then 

the frequency response of the discrete time filter is 

 

We first convert digital filter specifications to continuous time filter specifications. Neglecting aliasing, 

we get  specification by applying the relation 



                                                                                                                                     (9.2) 

where  is transferred to the designed filter H(z), we again use equation (9.2) and the 

parameter Tdcancels out. 

Let us assume that the poles of the continuous time filter are simple, then 

                                                                

The corresponding impulse response is 

 

Then 

                         

The system function for this is 

 

We see that a pole at  in the s-plane is transformed to a pole at   Td in the z-plane. If 

the continuous time filter is stable, that is , then the magnitude of  will be less 

than 1, so the pole will be inside unit circle. Thus the causal discrete time filter is stable. The mapping 

of zeros is not so straight forward. 

  

Example: 

Design a lowpass IIR digital filter H(z) with maximally flat magnitude characteristics. The passband 

edge frequency  is  with a passband ripple not exceeding 0.5dB. The minimum stopband 

attenuation at the stopband edge frequency  of   is 15 dB. 

We assume that no aliasing occurs. Taking , the analog filter has , 

the passband ripple is 0.5dB, and minimum stopped attenuation is 15dB. For maximally flat frequency 

response we choose Butterworth filter characteristics. From passband ripple of 0.5 dB we get 

 

 

at passband edge. 



From this we get  

From minimum stopband attenuation of 15 dB we get 

 

at stopped edge  

The inverse discrimination ratio is given by 

 

and inverse transition ratio  is given by 

 

               

Since N must be integer we get N=4. By  we get  

The normalized Butterworth transfer function of order 4 is given by 

 

           

This is for normalized frequency of 1 rad/s. Replace s by  to get , from this we get 

 

 

Bilinear Transformation 

This technique avoids the problem of aliasing by mapping  axis in the s-plane to one revaluation of 

the unit circle in the z-plane. 

If  is the continues time transfer function the discrete time transfer function is detained by 

replacing s with 



                                                                                                                                   (9.3) 

Rearranging terms in equation (9.3) we obtain. 

 

Substituting , we get 

 

If , it is then magnitude of the real part in denominator is more than that of the numerator and 

so. Similarly if , than  for all. Thus poles in the left half of the s-plane will get mapped to 

the poles inside the unit circle in z-plane. If  then 

 

So, , writing  we get 

 

rearranging we get 

                                   

      

or 

                                                                                                                             (9.5)                 

or 

                                                                                                         (9.6) 

The compression of frequency axis represented by (9.5) is nonlinear. This is illustrated in figure 9.4. 



 
Fig 9.4 

Because of the nonlinear compression of the frequency axis, there is considerable phase distortion in 

the bilinear transformation. 

  

Example 

We use the specifications given in the previous example. Using equation (9.5) with  we get 

            

 

 

Some frequently used analog filters 

In the previous two examples we have used Butterworth filter. The Butterworth filter of order n is 

described by the magnitude square frequency response of 

 

It has the following properties 

1.  



2.  

3. is monotonically decreasing function of  

4. As n gets larger, approaches an ideal low pass filter 

5.  is called maximally flat at origin, since all order derivative exist and they are zero 

at  

The poles of a Butterworth filter lie on circle of radius  in s-plane.  

There are two types of Chebyshev filters, one containing ripples in the passband (type I) and the other 

containing a ripple in the stopband (type II). A Type I low pass normalizer Chebyshev filter has the 

magnitude squared frequency response. 

 

where  is n
th

 order Chebyshev polynomial. We have the relationship 

 

with  

Chebyshev filters have the following properties 

1. The magnitude squared frequency response oscillates between 1 and  within the 

passband, the so called equiripple and has a value of  at , the normalized cut 

off frequency. 

2. The magnitude response is monotonic outside the passband including transitionand stopband. 

3. The poles of the Chebysher filter lie on an ellipse in s-plane. 

An elliptic filter has ripples both in passband and in stopband. The square magnitude frequency 

response is given by 

 

where  is Chebyshev rational function of O determined from specified ripple characteristics. 

An n
th 

order Chebyshev filter has sharper cutoff than a Butterworth filter, that is, has a narrower 

transition bandwidth. Elliptic filter provides the smallest transition width. 

 

Design of Digital filter using Digital to Digital transformation 

There exists a set of transformation that takes a low pass digital filter and turn into highpass, 

bandpass, bandstop or another lowpass digital filter. These transformations are given in table 9.1.  

The transformations all take the form of replacing the  in  by  some function of. 

Type From To Transformation Design Formula 



Low pass 

cutoff  

Low pass 

cutoff  
  

LPF HPF 

  

LPF BPF 

 

  

 

LPF BSF 

 

  

 
 

  

Starting with a set of digital specifications and using the inverse of the design equation given in table 

9.1, a set of lowpass digital requirements can be established. A LPF digital prototype filter  is 

then selected to satisfy these requirements and the proper digital to digital transformation is applied 

to give the desired. 

  

Example 

Using the digital to digital transformation, find the system function  for a low-pass digital filter 

that satisfies the following set the requirements (a) monotone stop and passband (b)-3dB cutoff 

frequency of (c) attenuation at and past  is at least 15dB. 

Because of monotone requirement, a Butterworth filter is selected. The required n is given by 

 

rounded to 2. 

 

For  we get from table 9.1. , From standard tables (or MATLAB) we find 

standard 2 nd order Butterworth filter with cut off  and then apply the digital transform to get 

 

 

 

FIR filter design 

In the previous section, digital filters were designed to give a desired frequency response magnitude 



without regard to the phase response. In many cases a linear phase characteristics is required through 

the passband of the filter. It can be shown that causal IIR filter cannot produce a linear phase 

characteristics and only special forms of causal FIR filters can give linear phase. 

If  represents the impulse response of a discrete time linear system a necessary and sufficient 

condition for linear phase is that  have finite duration N , that it be symmetric about its mid 

point, i.e. 

                                        

 

                                         

                                                             

For N even, we get 

                                                 

For N odd 

                                                             

 
For N even we get a non-integer delay, which will cause the value of the sequenceto change, [See 

continuous time implementation of discrete time system, for interpretation of non-integer delay]. 

One approach to design FIR filters with linear phase is to use windowing. 

The easiest way to obtain an FIR filter is to simply truncate the impulse response of an IIR filter. 

If  is the impulse response of the designed FIR filter, then an FIR filter with 

impulseresponse  can be obtained as follows. 

            

This can be thought of as being formed by a product of  and a window function  

 

where  is said to be rectangular window and is given by 



 

Using modulation property of Fourier transfer 

 

For example if  is ideal low pass filter and  is rectangular window is measured version 

of the ideal low pass frequency response. 

 

Fig  9.5 

 In general, the index the main lobe of , the more  spreading where as the narrower 

the main lobe (larger N), the closer  comes to. In general, we are left with a trade-off of 

making N large-enough so that smearing is minimized, yet small enough to allow reasonable 

implementation. Much work has been done on adjusting  to satisfy certain main lobe and side 

lobe requirements. Some of the commonly used windows are give in below.   

 (a) Rectangular 

 

(b) Bartlett (or triangle) 

                                   

(c) Hanning 

                                  

(d) Harming 

                                   



(e) Blackman 

   

(f) Kaiser 

                        

where  is modified zero-order Bessel function of the first kind given by 

 

             

The main lobe width and first side lobe attenuation increase as we proceed down the window listed 

above. 

An ideal lowpass filter with linear phase and cut off  is characterized by 

 

The corresponding impulse response is 

 

Since this is symmetric about , if we change  and use one of the windows listed 

above the will get linear phase FIR filter. Transition width and minimum stopped attenuation are listed 

in the Table 9.3.  

Window Transition Width Minimum stopband 

attenuation 

Rectangular 
 

-21db 

Bartlett 
 

-25dB 

Hanning 
 

-44dB 

Hamming 
 

-53dB 

Blackman 
 

-74dB 

Kaiser variable variable 
 



Table 9.3 

We first choose a window that satisfies the minimum attenuation. The transition bandwidth is 

approximately that allows us to choose the value of N. Actual frequency response characteristic are 

then calculated and we see if the requirements are met or not. Accordingly N is adjusted parameters 

for kaiser window are obtained from design formula available for this MATLAB or similar programmes 

have all there formulas. 
 

 

 

Realizations of Digital Filters 

We have many realizations of digital filter. Some of these are now discussed. Direct Form Realization -

An important class of linear time -invariant systems is characterized by the transfer function. 

 

 

A system with input  and output  could be realized by the following constant coefficient 

difference equation 

 

A realization of the filter using equation (9.31) is shown in figure (9.6) 

 
Fig 9.6  Direct form I 

  

The output  is seen to be weighted sum of input  and past inputs  and 

past outputs. Another realization can be obtained by uniting  as product of two transfer 



functions and , where  contains only the denominator or poles and 

 contains only the numerator or zeros as follows 

        

where 

       

 

 
Fig 9.7 

  

The output of the filter is obtained by calculating the intermediate result  obtained from 

operating on the input with filter  and then operating on w[n] with filter.Thus we obtain 

 

or 

                

and 

 

or 

 

The realization is shown in figure 9.8 



 
Fig  9.8  

  

Upon close examination of Fig 9.8, it can be seen that the two branches of delay elements can be 

combined as they both refer to delayed versions of  and upon simplification, the direct form II 

canonical realization is obtained as shown in figure 9.9. 

 
Fig 9.9 Direct form II  

In this form the number of delay element is max (M,N). It can be shown that this is the minimum 

number of delay elements that are required to implement the digital filter. This does not mean that 

this is the best realization. Immunity to roundoff and quantization are very important considerations. 

An important special case that is used as building block occurs when. Thus  is ratio of two 

qualities in , called biquadratic section, and is given by 



 

              

The alternative form is found to be useful for amplitude scaling for improving performance file filter 

operation. This form is shown in figure 9.10. 

 
Fig 9.10 

  

Cascade Realizations: In the cascade realization  is broken into productof transfer 

functions  each a rational expression in  as follows 

  

 
Fig 9.11  

 could be broken up in many ways; however the most common method is to use biquadratic 

sections. Thus 

 

by letting  and  equal to zero we get bilinear section. Even among the biquadratic sections 

we have many choices as how we pair poles and zeros. Also the order of the sections can be different 

Example: 

Final cascade realization of 

 

Using only real coefficients  can be decompressed as 



              

Divides both numerator and denominator by  and factoring 8 as , one possible 

rearrangement for  is 

                               

  

This can be realized as shown is figure 9.12 

 
Fig 9.12 

  

Parallel Realizations: 

The transfer function H ( z ) could be written as a sum of transfer functions 

 as follows: 

 

One parallel form results when  are all selected to be of the following form for  

 

If , we will have a section  of FIR filter, obtained by performing long division. Once 

denominator polynomial has degree more than the numerator polynomial we perform the partial 

fraction expansion. The resulting structure is shown in figure 9.13. 



 
Fig 9.13 

 

Example:Find the parallel form for the filter given in last example. 

 

Using MATLAB program or otherwise we get 

     

using direst form realization for individual section we get the structure shown in figure 9.14. 

 
Fig 9.14 Apart from these there exist a number of other realizations like lattice form, state variable 

realization etc. 
 

 


